korosh
 

 

مقدمه :

لازمه کار توربین وجود یک سیال کار مناسب، یک منبع انرژی سطح بالا و یک منبع برای انرژی سطح پایین می باشد. هنگامی که سیال از درون توربین گذر می کند قسمتی از انرژی آن به طور مداوم بیرون کشیده شده و به کار مفید مکانیکی تبدیل می شود.

توربین های بخار و گاز از انرژی حرراتی استفاده می کنند در حالی که توربین های آبی از انرژی فشار استفاده می کنند . اهداف اولیه یک طراح توربین حصول اطمینان از انجام این پروسه با حداکثر بازده و داشتن نیرو گاهی با حداکثر اعتماد در کمترین هرینه است . اهداف ثانویه این است که نیروگاه به کمترین نظارت و کمترین زمان برای راه اندازی نیاز داشته باشد که این اهداف با یکدیگر مغایرت دارند نتیجه نهایی سازش قابل قبول بین آنها خواهد بود .

 

انواع توربین :

 

الف) از نظر جهت جریان سیال داخل توربین

توربین جریان محوری : توربین که در آن مسیر جریان سیال به هنگام تبادل انرژی در داخل توربین موازی و در امتداد محور تو می باشد . (شکل1)در این توربین ها بخاری که از یک طرف وارد مراحل مختلف توربین می شود به صورت محوری از طریق نیغه های که شعاعی نصب شده اند جریان پیدا می کند.

توربین جریان شعاعی : توربین که در آن مسیر جریان سیال در داخل توربین حین تبادل انرژی در صحنه عمود بر محور تور باشد . (شکل2) در این توربینها بخار وارد مرکز توربین شده و از طریق 2 رتور که بر خلاف هم می چرخند منبسط شده و نهایتاً از طریق لوله خروجی به طرف بیرون رانده می شود . این نوع توربین برای طراحی با ظرفیت زیاد بخاطر جرم تیغه هایی که باید بروی حاشیه خارجی قرار گیرد قابل قبول نیست بزرگترین ظرفیت توربین با جریان شعاعی واحد 460 مگاوات باراکتورهای آب جوش در سوتد می باشد.

می باشد . توربین های بزرگ بخار امروزی از نوع محوری هستند که از نظر تیغه گذاری جهت جریان به 3 دسته تقسیم می شوند . ساده ترین شکل تیغه گذاری بصورت تک جریانی است . در جریان دو بل یا 2 راها صفحات تیغه داخل محفظه توربین به صورتی قرار یم گیرند که بخار در 2 جهت مخالف به صورت محوری جریان یابد . بخار از وسط سیلندر توربین وارد شده و به 2 شاخه تقسیم می شود که در خلاف جهت هم به سوی انتها رتور جریان می یابند مزایای آن جلوگیری از بکار بردن تیغه های بسیار بلند و کاهش نیروی رانش محوری توسط بخار بر وری تیغه ها است . کاهش ضربه هدف اصلی برای توربین با جریان معکوس است در آن بخار ا زطریق یکدسته تیغه وارد شده و آنگاه از طریق کانالهایی بطور داخلی و یا خارجی به سمت دسته دوم صفحات یا تغیه در خلاف جهت جریان قبل و در امتداد محور هدایت می شود . برای دبی بیشتر عبور می توان از چندین قسمت موازی استفاده کرد.

اگر سیال در خروجی توربین فشار پایین شعاعی داشته باشد . لازم است بخار به صورت زاویه قائمه چرخانده شود تا سیال به تیغه هایی با جریان محوری وارد و از آن خارج و در همان زمان در اطراف لوله توزیع شود . مساحت ورودی و خروجی باید فضای کافی برای ایجاد یکنواخت بدون افت فشار ناخاسته و یا جدایی جریان داشته باشد ممکن است که در خروجی توربین فشار پایین لوازم نصب شوند که جهت جریان را هدایت کنند . مانند اگزوز بومان که روی توربین جایکه آخرین مرحله تیغه های توربین قرار گرفته اند استفاده می شود در این طرح مرحله ما قبل توربین جدا می شود . جریان بخار از طریق حلقوی خارجی این مرحله مستقیماً به سوی کندانسور هدایت می شود و این هنگامی است که سیال از طریق قسمت داخلی در مسیری به سوی کندانسور جریان پیدا می کند زیرا 2 قسمت ما قبل تیغه های متحرک وظایف متعددی دارند.

 

 

ب) از نظر تغییرات فشار :

توربین ضربه ای : در این توربینها بخشی از حرارت بخار در تیغه های ثابت تبدیل به سرعت می شود . هیچگونه تلفات گرمایی و در نتیجه هیچگونه افت فشاری در عرض تیغه های متحرک وجود ندارد بنابر این کار مکانیکی انجام شده در تیغه های متحرک تنها در اثر تلف شدن قسمتی از سرعت کسب شده در تیغه های ثابت حاصل می شود . مقدار سرعت بهینه در پره ضربه ای یک ردیف تقریباً نصف سرعت مطلق بخار ورودی است . چنین سرعتی بسیار بیشتر از ماکزیموم سرعت مجازی که مقدار آن با توجه به تنشهای گریز از مرکز در محور تعیین می شود  علاوه بر آن سرعتهای زیاد بخار منجر به تلسفات اصطکاک زیاد نیز می شود در نتیجه بازده توربین کاهش می یابد.

توربین شربه ای مرکب سرعتی : مانند توربین یک ردیفه است که از یک مرحله نازل تشیکل می شود و با دنبال آن به جای یک ردیف پره متحرک چند ردیف پره قرار یم گیرند این ردیفها به وسیله ردیفهای پره های ثابت که به وسیله متصل هستند از هم جدا می شوند وظیفه پره های ثابت تنها هدایت بار خروجی از ردیف اول پره های متحرک به ردیف دوم این پره ها می باشد (شکل   ).

توربین ضربه ای مرکب فشاری : در این توربین ها افت آنتالپی بصورت مسلوی بین نازل های چندین ردیف ضربه ای که به طور متوالی قرار می گیرند تقسیم می کنند از این رو سرعتهای بخار ورودی به هر ردیف اساساً با هم مساوی و مقدار آن متناسب با һ کاهنده می باشد . با وجود اینکه افت آنتالین در ردیفها یکسان است افت فشار در آنها چنین نیست . این توربینها نیاز به آب بندی دیافراگم برای جلوگیری از در توربینهای بزرگ که بازده نسبت به هزینه سرمایه گذاری اهمیت دارد استفاده می شود.

توربین های عکس العملی : در این توربین ها فقط نیمی از افت انرژی حرارتی در تیغه های ثابت روی می دهد و نیم دیگر در تیغه های متحرک این عمل باعث افزایش سرعت بخار در تیغه های متحرک شده که متقاباً باعث ایجاد یک ضربه یا عکس العمل در جهت مخالف حرکت سیال خروجی از تیغه های می گردد . همچنین مقداری ضربه در تیغه های متحرک اتفاق می افتد که از تغییر مسیر سیال ناشی می شود ولی برای ایجاد یک افت سرعت خالص کافی نمی باشد تیغه های ثابت نیز افت گرما را به سرعت تبدیل می کنند .

 

ج) آرایش و پیکربندی توربینها :

توربین های تک سیلندر : محدوده تولید برق برای این توربینها در حدود100 مگا وات می باشد که بستگی به اصول طراحی و شرایط اولیه بخار استفاده کردن یا نکردن از سیکل باز گرم ، شرایط خروجی بخار و همچنین سرعت چرخش دارد . از نظر چگونگی پذیرش بخار به 4 دسته 1- جریان مستقیم یکراه 2- توربین با مرحله باز گرمایش 3- توربین بازیرکش بخار به منظور گرمایش آب تغذیه و یا به عنوان تولید همزمان از توربین زیر کش می شود 4- توربین القایی که در آن بخار فشار پایین در یک طبقه فشار پایین به توربین تزریق می شود . شکل (             )

توربین های چند سیلندر : تعداد مراحل بستگی به شرایط ورود و خروج و ملاحظات طراحی و سازندگان دارد . توربینهای I P و LP معمولاً 2 جریانه هستند . تعداد مراحل فشار پایین در این توربین ها موجب کاهش ارتفاع پره ردیف آخر می شود . تعداد سیلندر توربین LP را اگر شافت توربین LP با سرعت دورنی 1800 دو بر دقیقه و شناخت توربین فشار بالا با سرعت 3600 دور بر دقیقه بچرخد می توان کاهش داد . به عنوان مثال یک توربین با توان خروجی 900-500 مگاوات در نیروگاهی که با سوخت فسیلی کار می کند و یا نیروگاه هسته ای خنک شونده با گاز شامل یک توربین فشار متوسط و 2 توربین فشار پایین می باشد .

توربین تاندوم یاردیخی : توربینی که تمام سیلندرهای آن روی یک محور قرار می گیرند و به یک ژنراتور وصل می شود .

توربین متقاطع : توربینی که سیلندرهای آن بر روی 2 شافت موازی و مجزا که ژنراتور جدا از هم را می چرخانند نصب می شود . که برای جلوگیری کردن از طولانی شدن شافت در توربینهای چند سیلندر از ترکیب متقاطع استفاده می کنند ( شکل   ).

د) نحوه قرار گرفتن لوله خروجی توربین و اتصال به کندانسور :

نحوه قرار گرفتن توربین LP و اتصالش با کندانسور به طور محسوسی به محل کندانسور و جهت قرار گرفتن لوله های آن نسبت به محور توربین بستگی دارد . از لحاظ نصب کندانسورها به 2 دسته تقسیم می شوند 1- زیر توربین نصب می شوند که لوله ها یا در جهت محور یا عمود بر آن هستند 2- پهلوی توربین نصب می شوند انواع مختلفی مانند انتگرالی و صندوق دارند ( شکل      ).

در این کندانسورها بخاطر آنکه لوله ها به صورت محوری قرار گرفته اند فضای بخار کندانسور می تواند بخش بخش شود و لذا موجب کاهش فشار کندانسور در قسمت سرد انتهایی باشد و این بازده کمی را حاصل می کند . اشمل اصلی آن است که کندانسور به لحاظ ترکیب سازه ای بارگذاری و فونداسیون یک قسمت مهم از اجزای توربین می شود این باعث می شود که طراحی کندانستور بستگی به تعداد و اندازه توربین های LP پیدا کند ه مانع دستیابی به طراحی دسته جمعی توبینها و پیچیدگی مسائل طراحی بین یک سازنده توربین و کندانسور می گردد . این طراحی موجب سخت شدن دسترسی ه توربین جهت تعمیرالت به عنوان مثال تعمیر پایه یا تاقانها می گردد و نیروگاههای جدید با استفاده از یک کانال اتصال بین فلنج هروجی توربین و فلنج ورودی کندانسور استفاده گردید . چون لوله های کندانسور به طور معمول بسیار بلندتر از پهنای پوست توربین هستند این کانالها به صورت ذوذنقه ای شکل ساخته می شوند.

n = 120 f/p

 

هـ) سرعت چرخش توربین :

در موارد معمول چون باید توربین بدون گیر برکس به ژنراتور کویل شود باید توربین با ژنراتور سنکرون باشد.

که f فرکانس سیلستم برق ، p تعداد جفت قطبهای ژنراتور و n سرعت چرخش عملاً فقط 2 فرکانس شبکه در جهان وجود دارد 50 و 60 هرتز و ژنراتورها معمولاً به صورت 2 قطبی یا چهار قطبی طراحی می شوند پس ژنراتورهای 60هرتز با 2 سرعت 2 قطبی 3600 دور بر دقیقه و چهار قطبی 1800 دور بر دقیقه و ژنراتورهای 50 هرتز نیز با 2 سرعت 2 قطبی 3000 دور بر دقیقه و 4 قطبی 1500 دور بر دقیقه تبعیت می کنند.

در توربین های کوچک که به منظور راندمان پمپ تغذیه بویلر برای واحدهای بزرگ از سرعت 1500 دقیقه استفاده می کنند . همچنین توربین های با سرعت متغییر برای سیرکوله کردن گاز در راکتورهای خنک شونده با گاز استفاده شده است و توربینهای تک مرحله ای کوچک هم بعضی اوقات برای چرخش پمپهای تغذیه اظطرای در نیروگاه هسته ای استفاده می گردند.

عوامل انتخاب سرعت چرخش توربین و ژنراتور : 1- اندازه واحد و شرایط بخار اولیه و طرح های موجود 2- استانداردهای مربوط به تعویض قطعات یدکی 3- رابطه اندازه با وزن و قیمت و حمل نقل 4- محدوده مورد نظر برای قابلیت اعتماد، عملکرد انعطاف پذیر و راحتی نگهداری و تعمیرات 5- نسبت بازده گرمایی و مطابقت اقتصادی 6- انتخاب مناسب از توربین های LP به منظور خروجی مناسب برای تعمیرات بخار مافوق گرم ترجیحاً از توربین با جداکثر سرعت استفاده می شود . ولی در خروجی بزرگت نتیجتاً توربین  LP باید متحمل فشارهای خیلی بالا یا بار خروجی خیلی زیاد شود به همین منظور سیستم را با یک توربین نیم سرعت همراه می کنند.

توربینهای با ترکیب متقاطع با یک خطHP/I P تمام سرعت و یک خط LP نیم سرعت عملاً در سیستمهای 60 هرتز جایکه بار خروجی تشدید شده است استفاده می شود.

برای تجهیزات بخار اشباع بالانس خیلی یکنواخت تر می باشد و بخار با نسبت دبی حجمی بالاتر برای یک خروجی معین بار خروجی بحرانی تر را می سازد بنابر این سرعت دورانی عموماً 1800 دور بر دقیقه می باشد.

در بعضی موارد آنیم توربین اما با حداکثر دور انتخاب می شدند تا راندمان یک توربین LP را داشته باشند و خروجی بالا رفته و سیستم برای سوپر هیت با سرعت بالا آماده شود.

ماشینهای 1500 دور بر دقیقه ممکن است برای کمترین فشار خروجی از لحاظ اقتصادی بهینه تر باشد. در مقابل ماشین های 3600 دور بر دقیقه ای جایی که فشار خروجی بهینه بالای .mbar9 است می توانند راندمان بهتری داشته باشند.

محدودیت های خروجی :

 1- افت شیر بخار 2- کم شدن ظرفیت هنگامی که بخار از یک نازل عبور می کند ا زطریق تبدیل گرما انرژی جنبشی کسب می کند . انبساط بخار بعد از نازل باعث می شود که مقداری ازانرژی جنبشی از طریق فشار و افزایش انتروپی همراه است.

 

افت شیر بخار :

در شیر گاوارنر جائیک بخار بعد از شیر به سرعت منبسط می شود و همه انرژی جنبشی تولید شده از طریق اصطکاک به حرارت تبدیل می گردد .  این عمل باعث یم شود که آنتالین سیال به اندازه آنتالین آن در مدخل ورودی باقی بماند اما به قیمت افزایش زیاد انتروپی و کاهش فشار تمام می شود این عمل به عنوان خفقان معروف بوده و برای پایین آوردن بار از آن استفاده یم شود کاهش بیشتر بار از طریق کم کردن دهانه شیر انجام می گیرد .

 

کم شدن ظرفیت :

افت فشار ایجاد شده در نازلهای مدخل ورودی توربین و تمامی پره های ثابت که در پی می آیند باعث می شود که دبی جرمی توربین و در نتیجه قدرت خروجی کاهش یابد بین دبی جرمی و افت فشار در توربین رابطه ای وجود دارد که به قانون بیضی معروف است.

 شدت دبی جرمی ،  فشار ورودی و خروجی و K ثابت است . اگر اثر دمای ورودی نیز در نظر بگیریم.

آنالیز جامع تری نشان داد که V حجم مخصوص و n  ضریب پلی تروپیک نیز در این رابطه دخیلند .                  

قانون بیضی وسیله مفیدی برای مدل کردن اثرات بار جزئی روی یک توربین می باشد . عدد K قانون بیضی را می توان از طریق طراحی یا به صورت اطلاعات اندازه گیری شدی بدست آورد و با دانشتن میزان دبی مورد نیاز می توان متعاقباً فشار را برای هر مرحله توربین از طرف دهانه خروجی ، جائیکه شرایط همان شرایط ورودی کندانسور می باشد بدست آورد.

 

افت توربین :

1- اصطکاک : در سراسر توربین  از جمله در شیپوره ها و پره های متحرک وجود دارد .

2-  اتلاف پروانه ای : دوران رتور و پره نیروی گریز از مرکزی بر بخار اعمال می کند که موجب می شود بخشی از آن به صورت شعاعی جریان یابد و در طول پره های متحرک کشیده شود . هنگامی که پذیرش بخار به پره های متحرک کمتر از بار کامل است وضعیتی چرخش در پره متحرک پدید می آید که موجب اتلاف انرژی می شود .

3- نشست : در داخل بخار می توان از فاصله بین نوک پره متحرک و پوسته در صورت افت فشار در پره نشست کند در خارج در محل یاتاقانهای مختلف محور صورت می گیرد .

4- رطوبت بخار : ذرات ذرات مایع که دارای سرعت کمی هستند روی پره های متحرک ریخته می شوند و تحت زوایایی غیر از زاویه طراحی شده با پره برخورد می کنند و موجب کاهش کار مکانیکی رتور یم شوند سرعت ذرات دیگر نیز به وسیله بخار افزایش یم یابد و در اثر تبادل اندازه حرکت مقداری از انرژی بخار گرفت یم شود .

5- خروج بخار چون بخار خروجی از آخرین طبقه توربین به علت پایین بودن فشار بالا بودن حجم مخصوص با توجه به انرژی جنبشی بخار نوعی افت است.

6-  اتلاف پر انتقال گرما : به 3 صورت رسانش ،همرفت و تابش صورت می گیرد . رسانش در داخل توربین و بین طبقات آن انجام می گیرد و به وسیله همرفت که عمدتاً ناشی از سرعتهای بالای بخاراست تقویت می شود . رسانش همچنین بین پوسته توربین و پایه آن صورت می گیرد اتلاف ناشی از همرفت و تابش از طریق پوسته به سالن می رسد . در مورد توربینهای فشار بالا محسوس تر است چون دما در آنها بالا است .

7- اتلاف مکانیکی و الکتریکی : توربین کار تولیدی را به یک مواد برق تحویل می دهد در جریان ایین کار با اتلافهای اصطکاکی دریاتاقانها ، مکانیزم کنترل کننده ها و جعبه دنده کاهنده در صورت وجود مواجه می شویم . تلفات مکانیکی عمدتاً ثابت و مستقل از بار است . و از این رو درصد آن با کاهش بار افزایش می یابد که در توربین های بزرگ کمتر است .

تیغه های متحرک : تیغه های متحرک یک توربین بخاری را که قبلاً در نازل ، تا تعدادی تیغه ثابت شتاب گرفته است دریافت کرده و انرژی جنبشی آن را به صورت کار مکانیکی روی شافت توربین  تبدیل می کنند . بر خورد بخار با تیغه ها باعث تغییر مسیر حرکت بخار می شود که نتیجتاً تغییر ممنتوم سیال را در برداشته و لذا تولید نیرو می کند به طور ایداه آل زاویه تغییر جهت بخار هر چه به 180 درجه نزدیکتر باشد بهتر است . ( شکل     )

 نحوه انتقال انرژی که در تیغه های متحرک صورت می گیرد بستگی دارد به ضربه ای و عکس العملی بودن توربین .

پره های متحرک توربین عکس العملی چون مثل شیپوره عمل می کنند شکلی همانند پره های ثابت دارند هر چند که انحنای آنها در جهت مخالف است شکل (  ) دیاگرام سرعت برای یک توربین عکس العملی نشان می دهد که سرعت نسبی بخار جدا شده از تیغه های متحرک از سرعت نسبی بخار ورودی به تیغه های متحرک بزرگتر است علت این امر افزایش سرعت روی تیغه های متحرک است که ناشی از وجود افت گرما در آنجا می باشد . پره های متحرک توربین ضربه ای معمولاً متقارنند و اندازه زوایای ورودی و خروجی  و  در آنها در حدود 20 درجه است پره های ضربه ای کوتاهند و مسافت سطح مقطع عبور جریان در آنها ثابت است . شکل (     ) دیاگرام سرعت یک توربین ضربه ای نشان می دهد که نسبی بخار جدا شده  از تیغه متحرک کمتر از سرعت نسبی بخار ورودی به تیغه متحرک است به دلیل تبدیل انرژی جنبشی به مکانیکی در تیغه های متحرک است.

 

تاثیر بر طراحی توربین :

تفاوتهای مهمی در طراحی توربینهای ضربه ای و عکس العملی وجود دارد . تیغه های متحرک در توربین ضربه ای روی دیسکهایی قرار می گیرند که خود جزئی از یک شافت با قطر کوچک هستند یا به آن وصل می شوند نیروی محوری روی رتور کوچک است زیر افت فشار در عرض تیغه ها وجود ندارد . وجود افت فشار در عرض تیغه های متحرک در توربینهای عکس العملی عمر دیسکها را کم می کند در عوض دیسکها را با شافتهای بزرگ تو خالی که به رتور استوانه ای معروف هستند،جایگزین می کنند.

 

بازده تیغه :

بازده که با آن انتقال انرژی به تیغه های متحرک صورت می گیرد عمدتاً بستگی به نسبت سرعت تیغه متحرک به سرعت مطلق بخار دارد . نسبت سرعت روی بازده در توربین ضربه ای به گونه ای با آنچه که در یک مرحله عکس العملی روی می دهد متفاوت است.

 

کار انجام شده توسط تیغه متحرک

=

=

U

 

 

 

همان گونه که در شکل (          ) نشان داده شده فرض می کنیم  است و =B Ө برای کار انجام شده داریم:

 

 

انرژی در دسترس تیغه های نتحرک مقدار انرژی است که به تیغه های ثابت داده می شود.

انرژی در دسترس

این امر نشان دهنده آن است که نمودار بازده به صورت سهمی است مقدار بازده ماکزیموم را می توان با مشتق گرفتن از رابطه فوق نسبت به U و مساوی صفر قرار دادن آن به دست آورد.

         

که نتیجه می دهد.( برای توربین ضربه ای )

بازده ایده آل در مرحله عکس العملی : از آنجا که تیغه های متحرک و ثابت شکل یکسانی دارند با توجه به شکل لذا  

بنابر این داریم :

در یک مرحله عکس العملی همانوگنه که یک کاهش آنتالپی در عرض تیغه های متحرک وجود دارد در عرض تیغه های ثابت نیز کاهش آنتالپی داریم .

انرژی در دسترس شکل     دیاگرام بازده یک مرحله عکس العملی را در مقایسه با یک مرحله ضربه ای نشان می دهد.

برای رسیدن به بازده ماکزیموم برای هر 2 نوع طراحی ، تعداد مرحله ها در توربین عکس العملی باید 2 برابر تعداد آنها در توربین ضربه ای باشد این بعلت آن است که نسبت سرعت زیاد ( ) در توربین عکس العملی به معنی آن است که تنها افت حرارت کمی می تواند در هر مرحله انجام دهد. برای یک افت آنتالپی معلوم در هر طبقه برای به دست آوردن ماکزیموم بازده لازم است سرعت تیغه طبقه عکس العملی از طبقه شربه ای بیشتر باشد . برای یک سرعت تیغه معلوم سرعت سیال در طبقه عکس العملی از سرعت سیال در طبقه ضربه ای کمتر است.

 

طراحی تیغه های مدرن :

توربینهای مدرن ترکیبی از ضربه ای و عکس العملی هستند . توربینهای ضربه ای برای جبران ضعف بازده که ناشی از عکس العمل صفر یا جتی منفی است تا 20% از عکس العمل را در بیخ ریشه تیغه های متحرک بکار می گیرند . از طرف دیگر عکس العمل در بیخ توربینهای عکس العملی پایین آمده و تا حد 30 تا 40 درصد می رسد که باعث می شود تعداد مراحل مورد نیاز کاهش یافت و 50% عکس العمل را در نقطه میانی متحمل گردد . امروزه به طور دقیق 2 نوع طراحی به صورت زیر است.

1- توربین دیسک و دیافراگم با استفاده از تیغه هایی با عکس العمل کم

2- توربین درام روتور با استفاده از تیغه های با عکس العمل زیاد

تیغه های تاب دار توربین فشار پایین :

بره های عکس العملی به ویژه در طبقات نهایی بلند هستند و در آنها مقدار سرعت تیغه از پایه تا نوک با افزایش شعاع پره افزایش می یابد که این امر موجب تغییر شکل نمودار سرعت در طول پره می شود . از پایه تا نوک پره زوایه ورودی پره افزایش و زوایه خروجی پره کاهش می یابد و درجه عکس العمل از پایه تا نوک تغییر می کند . به طوری که شکل پره در پایه تا حدی مانند پره ضربه ای است و در نوک پره درجه عکس العمل به حداکثر می رسد که به چنین پره هایی پره تابدار گویند.

بخار در مرحله های یک توربین LP بسرعت منبسط گشته و به سمت سرعت زیاد، اغلب سرعت مافوق صوت ، شتاب پیدا می کند . بخار در خروجی توربین می تواند تا حدود 10 درصد رطوبت داشته باشد . جریان بخار سپس شکل پیچده ای پیدا می کند و نحوه طراحی تیغه های توربین LP این موضوع را نشان می دهد . تیغه ها بلند هستند و پیچش زیادی دارند بطوریکه زوایای ورودی و خروجی در تمامی طول تیغه از خصوصیات یک جریان سه بعدی تبعیت می کنند.

هنگامی که در اواخر دهه 1950 و اویل دهه 1960 واحدهای بزرگ طراحی شدند هیچگونه ابزار تحلیلی در دسترس نبود تا بطور مطمئنی طبیعت جریان بعدی را در سیلندرهای توربین LP پیش بینی کند . امروزه تست های عرضی روی این ماشین ها نشان دهنده وجود اجزاء شعاعی سرعت قابل ملاحظه ای در یک جریان به شدت واگرا می باشد . روش هایث آنالیز تمامی جریان که امروزه به خدمت گرفته شده اند محاسبه جزئیات حرکت سیال در اطراف هر تیغه را ممکن می سازند . این کار با روشهای محاسباتی مدرن صورت می گیرد و آنالیز حوزه جریان را در سیلندرهای توربین های مدل در کارخانجات سازنده و همچنین روی دستگاههای واقعی در حال سرویس بدست آمده پالایش و سپس ارزیابی می گردند . دقت پیش بینی جریان امروزه خیلی بالاست و طراحی تیغه ها به منظور دستیابی به شکل جریان سه بعدی مورد نظر ممکن شده است . تیغه های مدرن آخرین مرحله بطور قابل ملاحظه ای پیچش داده می شوند زیرا جریان در پیچیده ترین حالت خود در صفحه خروجی است . سطح مقطع تیغه در نوک آن تنها حدود 15 درصد سطح مقطع آن در بیخ آن است ( شکل 12-1) .

برای نشان دادن این مطلب در حال حاضر فرض می کنیم که آخرین مرحله بگونه ای طراحی شده که درجه عکس العمل کمی در قطر مبنا که نزدیک به دیسک روتر قرار دارد داشته باشد.

اکنون اجازه دهید تا به طرف منطقه وسط تیغه متحرک یعنی به قطر متوسط مرحله به سمت بالا حرکت کنیم.

بطور نمونه ، در تیغه های مدرن قطر نوک تقریباً دو برابر قطر مبناست به گونه ای که بطور متوسط فاصله تیغه ( یعنی فاصله محیطی بین دو تیغه مجاور ) تقریباً به اندازه 5/1 برابر فاصله تیغه در قطر مبناست . سرعت محیطی تیغه نیز 5/1 برابر بزرگتر از سرعت تیغه در قطر مبنا است . اگر مقطع تیغه متحرکی که در قطر متوسط استفاده می شود همانند آنچه که در قطر مبنا مورد استفاده قرار می گیرد انتخاب می شد عبور سیال از بین تیغه های متحرک ، بخاطر فاصله تیغه که افزایش یافته ، بطور غلطی انجام میب شد و در حالیکه اثر افزایش سرعت تیغه موجب تغییر جهت سرعت بخار نسبت به تیغه متحرک می گرید ، زوایه ورودی تیغه موجب تغییر جهت با جریان بخار ورودی نمی شد.

علاوه بر آن ، بردار سرعت بخار هنگام ترک تیغه و در نتیجه کاهش بازده می گردید . با تغییر دادن شکل سطح مقطع تیغه متحرک می توان بر این مشکل غلبه کرد . زوایه خروجی را کاهش می دهند تا سطح مقطع عبور جریان را محدود کنند بطوریکه یک افت فشار در عرض تیغه های متحرک بوجود آید ، بخار از تیغه های متحرک با سرعتی بیشتر جدا شود ، سرعت زیاد محیطی را جبران نموده و با سرعتی محوری خارج گردد . این باعث می شود که افت فشار در عرض تیغه های ثابت کاهش یابد تا همین افت فشار در کل مرحله نگه داشته شود.

 

  نوشته شده در  چهارشنبه سیزدهم بهمن 1389ساعت 19:9  توسط korosh  | 


همان طور كه در شكل زير مشاهده مي كنيد در ساختمان داخلي آنها از دو فلز آهن و برنج كه بر روي هم پرس شده و به صورت به صورت يكپارچه ديده مي شوند استفاده شده است.

بر اثر عبور جريان از بي متال ،دو فلز گرم مي شوند و طول آنها افزايش مي يابد. از آن جايي كه ضريب انبساط طولي يكي از فلزات بيشتر از ديگري است . دو فلز با هم به سمت فلزي كه ضريب انبسا ط طولي كمتري دارد خم  مي شود .در نتيجه  مسير عبور جريان كنتاكتها باز و مدار قطع مي شود.

طرز کار رله ی حرارتی (بی متال)

طرز کار رله ی حرارتی (بی متال)

در رله هاي حرارتي ، سه تيغه تعبيه شده كه سيم حا مل جريان چند حلقه به دور آن پيچيده  مي شود. در اثر عبور جريان  اضا فه بار، هادي ها گرم ، حرارات به بي متال منتقل مي شود و با عث خم شدن تيغه مي شود. حركت هر يك از بي متالها به اهرمي فشار مي آورد و با جا به جا شدن اهرم ، يك ميكرو سوئچ كه داراي كنتاكت تبديل باز و بسته است تغيير وضعيت مي دهد و مدار فرمان را قطع مي كند. این رله ها تنظیم پذیر هستند.

در نمونه ی سه فاز این رله ها رله ی حرارتی از سه پل قدرت برای عبور جریان اصلی مصرف کننده تشکیل شده و دو کنتاکت فرمان دارد. یکی کنتاکت بسته جهت قطع مدار تغذیه ی کناکتور و دیگری کنتاکت باز که پس از عمل بی متال بسته می شود و برای اطلاع دادن از خطای حاصل در مدار است.

بعضی از این رله ها دارای کلیدی هستند که برای دو حالت دستی و اتوماتیک طراحی شده اند، بدین مفهوم که در حالت دستی پس از قطع بی متال باید دگمه ی RESET را فشار داد تا رله به حالت اول بازگردد. در حالت اتوماتیک رله پس از مدت زمان معینی به حالت اول باز می گردد.

برخی از قسمت های یک اورلود حرارتی

برخی از قسمت های یک اورلود حرارتی

قسمت های مختلف یک رله ی حرارتی (بایمتال)

قسمت های مختلف یک رله ی حرارتی (بایمتال)

  نوشته شده در  سه شنبه پنجم بهمن 1389ساعت 15:50  توسط korosh  | 
کنتاکتورها کلیدهای الکترو مغناطیسی می باشند که مهمترین جزء مدارهای فرمان الکتریکی را تشکیل میدهد.
موارد استفاده کنتاکتورها امروزه در ماشینهای صنعتی بسیار زیاد بوده و برای راه اندازی و کنترل اکثر ماشینها از کنتاکتور استفاده میشود .
مزایای استفاده کنتاکتورها در ازای کلیدها را میتوان بشرح زیر بیان نمود:
۱.کنترل و فرمان از راه دور توسط کنتاکتور اقتصادی تر وایمنی تر است.
۲.از خطرات ناشی از راه افتادن دوباره ماشینهایی که در اثر قطع ناگهانی برق شبکه از کار افتاده است جلو گیری میکند .
۳.توسط کنتاکتور امکان قطع و وصل مصرف کننده از چندین محل عملی میباشد.
۴.امکان مدار فرمان اتوماتیک مقدور است .
۵.با طراحی مناسب میتوان سرعت قطع ووصل مدار رابالابرد .
۶.حفاظت دستگاه ها مناسب تر و مطمئن تر است .
ساختمان کنتاکتورها:
کنتاکتور تشکیل شده است از یک مغناطیس الکتریکی که یک قسمت آن متحرک بوده و توسط فنری از قسمت ثابت نگه داشته میشود و یک سری کنتاکت عایق شده را از یکدیگر به آن متصل می باشند و با آن حرکت میکنند.
در قسمت ثابت این مغناطیس الکتریکی فیزیک یک سری کنتاکت دیگر نیز محکم شده است . هنگامی که از سیم پیچ مغناطیسی جریان معینی عبور میکند . کنتاکتهای متحرک توسط نیروی مغناطیسی به کنتاکتهای ثابت فشرده می شوند و در همان حال یک یا چند فنر فشرده شده ویا کشیده می شوند . اما زمانی که ولتاژ قطع شده و یا از حد معینی کمتر شود . نیروی فنرها باعث میشود که این کنتاکتها بطور اتوماتیک از هم جدا شوند.
کنتاکتورهای استاندارد شده دارای سه کنتاکت اصلی برای مدار تغذیه مصرف کننده (اصلی) و چند کنتاکت فرعی برای مدار فرمان است .
در مورد کنتاکتور میتوان گفت که یک کلید مغناطیس است که وقتی ولتاژ مورد نظر به آن اعمال میشود یک سری کنتاکت(یا کلید)باز را بسته و یک سری کنتاکت بسته را باز میکند.که با استفاده از این خاصیت مدارهای مختلفی میتوان مدارهای زیادی رو طراحی کرد.این کلید از دو هسته به شکل E یا U که یکی ثابت و دیگری متحرک است و در میان هسته ثابت یک بوبین یا سیم پیچ قرار دارد،تشکیل شده است. وقتی بوبین به برق وصل میشود با استفاده از خاصیت مغناطیسی ،نیروی کششی فنر را خنثی میکند و هسته فوقانی را به هسته تحتانی متصل کرده باعث میشود که تعدادی کنتاکت عایق شده از یکدیگر به ترمینال های ورودی و خروجی کلید متصل میشود و یا باعث باز شدن کنتاکت های بسته کنتاکتور بسته کنتاکتور گردد.در صورتی که مدار تغذیه بوبین کنتاکتور قطع شود ،در اثر نیروی فنری که داخل کلید قرار دارد هسته متحرک دباره به حالت اول باز میگردد.مزایای استفاده از کنتاکتورکنتاکتورها نسبت به کلیدهای دستی صنعتی مزایایی به شرح زیر دارند:1_مصرف کننده می تواند از راه دور کنترل می شود.2_مصرف کننده میتواند از چند محل کنترل شود.3_امکان طراحی مدار فرمان اتوماتیک برای مراحل مختلف کار مصرف کننده وجود دارد.4_سرعت قطع و وصل کلید زیاد و استهلاک آن کم است.5_از نظر حفاظتی مطمئن ترند و حفاظت مطمئن تر و کامل تری دارند.6_عمر موثرشان بیشتر است.7_هنگام قطع برق،مدار مصرف کننده نیز قطع می شود و به استارت مجدد پیدا میکند؛در نتیجه از خطرات وصل ناگهانی دستگاه جلو گیری می کند.کنتاکتور برای جریان های AC وDC ساخته میشود.تفاوت این دو کنتاکتور در این است که در کنتاکتور های AC از یک حلقه اتصال کوتاه برای جلوگیری از لرزش حاصل از فرکانس برق استفاده می شود. نیروی کششی یک مغناطیس الکتریکی جریان متناوب،متناسب با مجذور جریان عبوری از آن و در نتیجه متناسب با مجذور اندکسیون مغناطیسی است.چون مقدار جریان لحظه ای با توجه به رابطه i=Imax SIN wt تعقیر میکند،نیروی کششی مغناطیسی نیز برابر با F=Fmax sin wt (سینوس توان 2 دارد که نمیشد تایپ کنی) خواهد شد و تعداد دفعاتی که این نیرو ماکزیمم و صفر می شود، به اندازه دو برابر فرکانس شبکه خواهد گردید.در نتیجه ،در لحظاتی که مقدار نیروی کششی بیشتر از نیروی مقاوم فنر های کنتاکتور باشد ،هسته کنتاکتور جذب می شود و در لحظاتی که مقدار نیروی کششی کمتر از مقدار نیروی فنر ها شود،هسته متحرک هسته نیز آزاد شده و به محل اول خود باز می گردد.بدین ترتیب در هسته متحرک لرزش و صدا ایجاد خواهد شد این نوسانات را می توان به وسیله یک حلقه بسته در سطح قطب ها جا سازی شده و حدود نصف تا 3/2 سطح هر قطب را پوشانده است از بین برد و لرزش آن را برطرف کرد. عمل این حلقه آن است که مانند سیم پیچ ثانویه ترانسفورماتوری که در حالت اتصال کوتاه قرار گرفته است،از آن جریان القایی عبور میکند و باعث ایجاد فوران مغناطیسی فرعی در مدار هسته می شود. این فوران فرعی با فوران اطلی اختلاف فاز دارد و در زمانی که نیروی کششی حاطل از فوران اطلی صفر باشد ،نیروی کششی حاصل از فوران اطلی ماکزیمم خواهد بود و در حالتی که نیروی حاصل از فوران ماکزییم باشد ،این نیرو صفر خواهد بود و چون جمع این دو نیرو به هسته متحرک اثر میکند،نیروی کششی در هر لحظه از نیروی مقاومت فنر بیشتر خواهد بود.ولتاژ تغذیه بوبین متفاوت است و از 24 تا 380ولت ساخته می شود. در اکثر کشورهای صنعتی برای حفاظت بیشتر ،تغذیه بوبین کنتاکتور را زیر ولتاژ حفاظت شده (65ولت)انتخاب میکنند. و یا برای تغذیه مدار فرمان ،ترانسفورماتور مجزا کننده به کار می برند.

شناخت مشخصات کنتاکتورنوع کنتاکتور
با توجه به نوع مصرف کننده و شرایط کار ،کنتاکتورها دارای قدرت و جریان عبوری مشخصی برای ولتاژهای مختلف هستنند. بنابراین باید به جدول و مشخصات کنتاکتور توجه کافی مبذول کرد و انخاب کنتاکتو.را منطبق بر مشخصات مورد نیاز قرار داد.برای اتصال مصرف کننده به شبکه باید از کلید یا کنتاکتوری با مشخصات مناسب استفاده کرد که کنتاکت های آن تحمل جریان راه اندازی و جریان دائمی را داشته باشد و همچنین در صورت اتصال کوتاه،جریان لحظه ای زیادی که از مدار عبور می کند. و یا جرقه ای که هنگام اتصال مدار ایجاد می شود ،صدمه ای به کلید نزند.بدین منظور و برای این که بتوانیم پس از طراحی مدار ،کنتاکتور مناسب را برای اتصال مصرف کننده به شبکه انتخاب کنیم،باید با مقادیر نامی مربوط به کنتاکتور آشنا شویم.برای انتخاب کنتاکتور در قدرت های مختلف می توان از جدول هایی استفاده کرد.
قسمتهای مختلف کنتاکتور عبارتند از:
۱- حامل کنتاکتهای ثابت( باید دارای درجه عایقی مناسبی باشد )
۲- ترمینال
۳- صفحه فلزی انتهایی برای نصب قسمتهای ثابت روی آن
۴- کنتاکتهای ثابت و متحرک ( این کنتاکتها باید در یک خط قرار گرفته و از پوشش اکسید نقره بمنظور بالا بردن ضریب اطمینان در مقابل کار زیاد در روی آنها استفاده شود )
۵- بوبین کنتاکتور (در کنتاکتور این بوبین طوری طراحی شده است که در مقابل عوامل جوی و نیروهای مکانیکی مقاوم باشد )
۶- ترمینالهای ورودی و خروجی
۷- سیستم هسته آهنی ثابت و متحرک
۸- قسمت کنترل جرقه
۹- حامل کنتاکتهای متحرک ( این قسمت باید دارای درجه عایقی مناسبی باشد.)
جریانهای نامی . جریان کار نامی ولتاژ کار نامی و انرژی مصرفی کنتاکتورها
جریانهای نامی:
چون کنتاکتهای متحرک با فشار بر روی کنتاکتهای ثابت اتصال پیدا میکنند و سطح
کنتاکتها نیز کاملا صاف نیست لذا سطح تماس آنها یک نقطه کوچک خواهد بود بنا
ـــ بر این در محل تماس دو کنتاکت مقاومت الکتریکی وجود داشته و عبور جریان
با عث گرم شدن کنتاکتها خواهد شد . هرچه زمان عبور جریان از کنتاکتورها بیشتر
باشد کنتاکتهای آن بیشتر گرم میشود .باتوجه به زمان لازم برای وصل بودن کنتاکتورها جریانهای زیر نعریف میشود :
الف ـــ جریان دائمی ( Ith2 )
جریانی است که میتواند در شرایط کار نرمال و در زمان نامحدود و بدون قطع شدن از کنتاکتهای کنتاکتور عبور کرده و به آن صدمه ای نزند و حرارت ایجاد شده در کنتاکتها از حد مجاز تجاوز ننموده .
ب ـــ جریان هفتگی ( Ith1 )
جریانی است که در شرایط کار نرمال و با هفته ای یک بار اتصال میتوان از کنتاکتهای کنتاکتور عبور کرده و در خصوصیات کار کنتاکتور هیچگونه تغییری پیش نیاورد .
ج ـــ جریان هشت ساعتی ( Ith )
جریانی است که با اتصال یک بار در هر هشت ساعت در شرایط کار نرمال میتواند از کنتاکتهای کنتاکتور عبور کرده و تغییری در خصوصیات کار کنتاکتور ایجاد نکند .
جریان کار نامی :جریان کار نامی یک کنتاکتور جریانی است که شرط استفاده از کنتاکتور را بیان میکند و در رابطه با نوع و مقدار ولتاژ بار میباشد .
جریان اتصال کوتاه ضربه ای:
در مدار فرمان و مدار قدرت کنتاکتور باید از وسایل حفاظتی استفاده نمود تا در صورت اتصال کوتاه بلافاصله مدار قطع شود چون در فاصله زمانی اتصال کوتاه تا قطع مدار توسط وسایل حفاظتی از کنتاکتهای کنتاکتور نیز جریان خیلی زیادی عبور میکند لذا باید کنتاکتها تحمل این جریان را در این زمان کوتاه داشته باشند و به یکدیگر جوش نخورده و یا تغییر فرم ندهند .
مقدار ماکزیمم جریان را در لحظه اتصال کوتاه به Is نشان داده و جریان اتصال کوتاه ضربه ای مینامند .
جریان نامی زمان کم ( جریان ۱ ثانیه )
مقدار موثر جریانی را که کلید برای زمان یک ثانیه در حالت اتصال کوتاه میتواند تحمل کند بدون اینکه صدمه ببیند جریان نامی زمان کم و یا جریان یک ثانیه تامیده میشود
ولتاژ های نامی :الف ـــ ولتاژ کار نامی ( Ue )
مربوط به اتصال دهنده ( کنتاکتها ) بوده و مقدار ولتاژی است که کنتاکتها میتوانند با جریان کار نامی Ie در این ولتاژ مورد استفاده قرار گیرند .
ب ـــ ولتاژ عایقی نامی ( Ui )
استحکام عایقی بین عضوهای اتصالی را مشخص میکند .
ج ـــ ولتاژ تغذیه نامی ( Uc )
ولتاژی است که باید به بوبین کنتاکتور اتصال یابد و معمولا مقدار آن روی بوبین کنتاکتور نوشته میشود .
انرژی مصرفی کنتاکتورها :بوبین هر کنتاکتوری را می توان برای کار با ولتاژهای مختلف طراحی نمود از ۱۲ولت جریان مستقیم تا ۱۵ ولت متناوب و ولتاژهای دیگر .
به علت عبور جریان از بوبین کنتاکتور . کنتاکتور به صورت یک مصرف کننده مقداری توان مصرف کرده و گرم میشود . یک کنتاکتور خوب باید دارای مصرف داخلی کم باشد . برای کم کردن مصرف کنتاکتور میتوان از یک مقاومت که بعد از عملکرد کنتاکتور بابوبین سری شود استفاده کرد . به دو سر این مقاومت تیغه ای از خود کنتاکتور وصل میگردد بعد از اینکه جریان وارد سیم پیچ شد تیغه که قبلا بسته بود باز شده و مقاومت سر راه بوبین قرار میگیرد با آن سری می شود
  نوشته شده در  سه شنبه پنجم بهمن 1389ساعت 15:47  توسط korosh  | 
در مورد ساختمان و مزايا و معايب اين موتورها در قسمتهای قبلی اين وبلاگ مطالبی را .

روشهای مختلف راه اندازی موتورهای آسنكرون



در مورد ساختمان و مزايا و معايب اين موتورها در قسمتهای قبلی اين وبلاگ مطالبی را مشاهده كرديد در اين قسمت از راه اندازی اين موتورها مطالبی‌ را مينويسم اميدوارم مورد توجه تان قرار گيرد .

موتورهای آسنكرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی ميشوند و با توجه به اينكه موتور در لحظه شروع به كار جريان زيادی ميكشد و اين جريان زياد علاوه بر اينكه به خود موتور صدمه ميزند به مصرف كننده های ديگری كه از اين خط تغذيه می كنند لطمه زده و كار آنها را مختل می سازد.

بنابراين برای كم كردن جريان شروع به كار موتور بايد چاره ای انديشيد؟؟

معمولاً به روشهای زير راه اندازی ميشود در نتيجه جريان راه اندازی‌ كم ميشود :



1- به طور مستقيم

2- توسط كليد يا مدار ستاره – مثلث

3- توسط كمپانساتور

4- راه اندازی بوسيله اضافه كردن مقاومت در مدار روتور

5- راه اندازی بوسيله داخل كردن مقاومت در مدار استاتور



1- راه اندازی موتور به طور مستقيم : برای‌ موتورهايی كه بزرگ نيستند و‌ آمپر زيادی از شبكه نمی كشند بوسيله يك كليد سه قطبی به شبكه متصل ميشوند .



2- راه اندازی ستاره – مثلث : ابتدا ولتاژ اوليه را كه بر هر فاز متصل ميشود ،‌ را كم مى كنيم سپس وقتي كه موتور به دور نرمال خود رسيد ولتاژی كه به هر فاز می رسد را زياد می كنيم .

بنابراين در لحظه اول كليد به حالت ستاره بوده يعنی ولتاژ دو سر هر فاز به u/√3 تقليل می يابد در نتيجه موتور با توان 3/1 توان نامی خود كار می كند .

استعمال كليد روی انواع موتورها با روتور قفسه ای يا روتور سيم پيچی امكان پذير است . ولی در موتورهايی كه با بار زياد كار می كنند از كليد برای راه اندازی استفاده نمی شود . چون گشتاور مقاوم بار زياد است .



3- راه اندازی توسط كمپانساتور : اين وسيله راه اندازی كه اتوترانسفورماتور كاهنده است بين موتور و شبكه قرار می گيرد . اين طريق راه اندازی به دليل اينكه جريان شروع به كار و گشتاور شروع به كار هر دو به يك نسبت پايين می آيند خيلی خوب است . ولی چون هزينه آن گران است فقط در موتورهايی كه قدرت زياد دارند استفاده می شوند.



4- راه اندازی موتورهای قفسه ای بوسيله قرار دادن مقاومت سر راه استاتور : برای جلوگيری از عبور جريان زياد در موقع راه اندازی موتور ميتوان مقاومت هايی به طور سری سر راه سيم پيچی های موتور قرار دارد . و به تدريج كه موتور دور می گيرد دسته مقاومتهای راه انداز را به طرف چپ حركت داده در اين صورت كم كم مقاومتها از سر راه مدار خارج ميشود.

اين طريق راه اندازی به دليل تلفات انرژی در مقاومتها زياد و نيروی كشش در لحظه شروع به كار كم ، استعمال كمی دارد.



5- راه اندازی موتورهای آسنكرون با روتور سيم پيچی با قرار دادن مقاومت سر راه روتور : تمام مقاومتهای راه انداز را سر راه سيم پيچی روتور قرار داد . بدين وسيله مقاومت مدار سيم پيچی روتور را به حداكثر مقدار خود ميرسانند و سپس استاتور را به شبكه برق وصل می كنند . مقاومت روئستای روتور به تدريج از مدار خارج ميشود

  نوشته شده در  سه شنبه پنجم بهمن 1389ساعت 15:44  توسط korosh  | 

تاریخچه

در ۱۸۸۲ نیکولا تسلا اصول میدان مغناطیسی دوار را پایه گذاری کرد و راه را برای استفاده از میدان دوار به عنوان یک نیروی مکانیکی باز کرد. در سال ۱۸۸۳ او از این اصول برای طراحی یک موتورالقایی دو فاز استفاده کرد. در ۱۸۸۵ «گالیلئو فراریس» (Galileo Ferraris) مستقلاً تحقیقاتی را در این باره آغاز کرد و در ۱۸۸۸ نتایج تحقیقات خود را در قالب مقاله‌ای به آکادمی‌سلطنتی علوم در تورین ایتالیا ارایه داد[نیازمند منبع].

حرکتی که نیکولا تسلا در ۱۸۸۸ آغاز کرد چیزی بود که امروزه برخی از آن به عنوان «انقلاب صنعتی دوم» یاد می‌کنند، چراکه این حرکت به تولید آسانتر انرژی الکتریکی و همچنین امکان انتقال انرژی الکتریکی در طول مسافت‌های طولانی انجامید. قبل از اختراع موتورهای جریان متناوب به وسیله تسلا موتورها به وسیله حرکت دائم یک هادی در میان میدان مغناطیسی ثابت به حرکت در می‌آمدند. تسلا به این نکته اشاره کرد که می‌توان کلکتورهای موتور را حذف کرد به طوریکه موتور به وسیله میدانی دوار به حرکت درآید. تسلا بعدها موفق به کسب حق امتیاز شماره ۰٫۴۱۶٫۱۹۴ ایلات متحده برای اختراع موتور خود شد. این موتور که در بسیاری از عکس‌های تسلا نیز هست نوع خاصی از موتور القایی بود[نیازمند منبع].

در سال ۱۸۹۰ میخایل اسیبوویچ یک موتور سه فاز روتور قفسی اختراع کرد. این نوع موتور امروزه به طور وسیعی برای کاربردهای گوناگون استفاده می‌شود[نیازمند منبع].

[ویرایش] موتور جریان متناوب سه فاز القایی

در بیشتر محل‌های که سیستم تغذیه سه فاز (یا چند فاز) در دسترس است از این گونه موتورها استفاده می‌شود به ویژه در قدرت‌های بالاتر استفاده از این موتورها بسیار رایج است. اختلاف زاویه بین هر یک از سه فاز تغذیه کننده باعث به وجود آمدن یک میدان دوار متعادل می‌شود که دارای سرعتی ثابت است.

در یک موتور القایی میدان مغناطیسی دوار موجب القای یک جریان در هادی‌های روتور می‌شود. این جریان به طور متقابل میدان مغناطیسی را به وجود می‌آورد که موجب چرخش روتور در جهت میدان مغناطیسی دوار خواهد شد. اما نکته‌ای که باید به آن توجه داشت این است که روتور همیشه باید با سرعتی کمتری از سرعت استاتور بچرخد و به عبارت دیگر در صورتی که سرعت روتور و میدان دوار یکسان باشد جریانی در روتور القا نخواهد شد.

موتورهای القایی در صنایع به طور گسترده‌ای مورد استفاده قرار می‌گیرند اما قدرت‌های حدود ۵۰۰ کیلووات خیلی بیشتر رایج هستند. موتورهای القایی معمولاً با اندازه‌های استانداردی ساخته می‌شوند (البته این استانداردها در اروپا و آمریکا متفاوت است) این استانداردگذاری در ساخت موتورها تقریباً همه آنها را قابل تعویض می‌کند. توان برخی از موتورها القایی بسیار بزرگ تا ده‌ها هزار کیلو وات می‌رسد و از جمله استفاده‌های این موتورها می‌توان به کمپرسورهای خطوط لوله و تونل‌های باد اشاره کرد. برای این موتورها دو نوع مختلف از روتور وجود دارد:

  • روتور قفسی (قفس سنجابی)
  • روتور سیم‌پیچی شده

[ویرایش] روتور قفسی

بیشتر موتورهای جریان متناوب از این نوع روتورها استفاده می‌کنند به طوری که می‌توان گفت همه موتورهای خانگی و موتورهای سبک صنعتی از این نوع روتورها استفاده می‌کنند. روتور قفسی یا قفس سنجابی نام خود را به خاطر شکلش گرفته؛ دو رینگ در دو انتهای روتور که به وسیله میله‌های به هم وصل شده‌اند شکلی تقریبً شبیه یک قفس تشکیل می‌دهند. این میله‌ها عموماً از جنس آلمینیوم یا مس هستند و در بین ورقه‌های لایه لایه شده فولادی ریخته شده‌است. بیشتر جریان القا شده در روتور از میان این میله‌ها عبور می‌کند چراکه ورق‌های لایه لایه فولادی به علت لاک زنی شدن دارای مقاومت الکتریکی زیادی هستند. ولتاژ ایجاد شده در بین حلقه‌ها بسیار پایین است اما جریان جاری بسیار زیاد است و این به دلیل مقاومت پایین این میله‌هاست. در موتورهایی که راندمان بالاتری دارند از مس برای تولید روتور استفاده می‌شوند چراکه مقاومت الکتریکی این فلز کمتر است.

تصویری از روتور یک موتور، روتور قفسی

در هنگام کار، موتور القایی شبیه یک ترانسفورماتور عمل می‌کند که استاتور اولیه و روتور ثانویه آن محسوب می‌شود. زمانیکه روتور با سرعت میدان دوار نمی‌چرخد جریان القا شده در روتور زیاد است، این جریان زیاد میدان مغناطیسی ایجاد می‌کند که با افزایش سرعت روتور سرعت آن را هرچه بیشتر به سرعت استاتور نزدیک می‌کند. یک موتور القایی روتور قفسی در هنگام بی باری (سرعت برابر با میدان دوار) تنها مقدار کمی‌انرژی الکتریکی برای جبران تلفات مکانیکی (اصطکاک) و تلفات مسی (تلفات ایجاد شده به دلیل مقاومت هادی‌های الکتریکی) مصرف می‌کند. اما زمانی که بار موتور افزایش می‌یابد میزان جریان جاری در روتور افزایش می‌یابد (برای جبران فشار وارده به محور موتور) و به این ترتیب موتور مانند یک ترانسفورماتور عمل می‌کند چراکه با افزایش جریان در ثانویه جریان اولیه نیز افزایش می‌یابد. این دلیل کاهش یافتن نور لامپ‌ها در هنگام روشن شدن موتورهای القایی است البته زمانی که این موتورها به هواکش‌ها متصل شده‌اند این اتفاق نمی‌افتد.

موتورهای القایی که از حرکت وامانده‌اند (به دلیل بار زیاد یا گیر کردن محور) جریانی بسیار زیاد مصرف خواهند کرد چراکه تنها عامل محدود کننده جریان در چنین حالتی مقاومت ناچیز هادی‌های استاتور و روتور خواهد بود و در صورتی که این جریان به وسیله عاملی خارجی مهار نشود موتور و تجهیزات تغذیه کننده آن آسیب خواهند دید.

[ویرایش] روتور سیم‌پیچی

زمانی که مقاومت سر راه روتور قابل تغییر باشد، روتور را سیم‌پیچی شده می‌نامند. یکی از کاربردهای این نوع روتورها در موقعیت‌هایی است که به سرعت متغیر نیاز است. در این روتورها سم‌پیچ روتور طوری پیچیده شده که تعداد قطب‌ها در روتور و استاتور برابر هستند و خروجی هر فاز از روتور به طور جداگانه و به وسیله حلقه‌های لغزنده از موتور خارج شده‌است. این حلقه‌های لغزنده ارتباط الکتریکی خود با محور موتور را معمولاً به وسیله کربن ایجاد می‌کنند و پس از خارج شدن از موتور به یک مقاومت متغیر خارجی وصل می‌شوند.

در مقایسه با موتورها روتور قفسی، موتورهای روتور سیم‌پیچی گران‌تر هستند و به علت استهلاک حلقه‌های لغزان دارای هزینه تعمیر و نگه‌داری بالاتری نیز هستند، قبل از تولید تجهیزات کنترل سرعت الکترونیکی این موتورها بهترین راه برای کنترل سرعت بودند همچنین این موتورها می‌توانند در لحظه شروع به کار گشتاور بالاتری داشته باشند. استفاده از کنترل کننده‌های ترانزیستوری فرکانس راهی مناسب برای کنترل دور موتورهای جریان متناوب است و این از تمایل برای استفاده از موتورهای روتور سیم‌پیچی کاسته‌است.

راه‌های مختلفی برای راه‌اندازی موتورهای جریان متناوب استفاده می‌شود که اغلب این راه‌ها بر کاهش جریان هجومی‌در هنگام راه‌اندازی و همچنین افزایش گشتاور راه‌اندازی تکیه می‌کنند. این گونه موتورها تنها با وصل ترمینال‌های ورودی به برق شهری با ولتاژ استاندار شروع به کار می‌کنند و (بر خلاف برخی موتورهای جریان مستقیم) نیاز به روش راه‌اندازی ویژه‌ای ندارند. یکی دیگر از روش‌های کاهش جریان راه‌اندازی موتور، کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی است که این کار به وسیله سری کردن سیم‌پیچ‌های بیشتر یا استفاده از اتوترانسفورماتور،تریستور و یا دیگر تجهیزات کاهش ولتاژ صورت می‌گیرد. روشی دیگر برای کاهش ولتاژ سیم‌پیچ‌ها در لحظه راه‌اندازی تغییر طرز قرار گرفتن سیم پیچ‌ها و استفاده از کلیدهای ستاره-مثلث است. در این حالت ابتدا موتور را در حالت ستاره راه اندازی کرده و پس از رسیدن به دور نامی، ترتیب قرار گرفت سیم‌پیچ‌ها را به وسیله کلید تغییر داده و به حالت مثلث می‌برند. این روش در اروپا رایج‌تر از آمریکای شمالی است.

[ویرایش] سرعت موتور آسنکرون

سرعت در یک موتور جریان متناوب به دو عامل فرکانس و تعداد قطب‌های موتور بستگی دارد و از فرمول زیر به دست می‌آید:

N_{s}=\frac{120 f}{P}

که:

  • NS سرعت میدان دوار یا سرعت سنکرون (r. p. m)
  • f فرکانس منبع جریان متناوب (هرتز)
  • P تعداد قطب‌های سیم‌پیچی به ازای هر فاز است.

میزان سرعت واقعی روتور همیشه از سرعت میدان دوار کمتر است. این اختلاف سرعت را لغزش می‌نامند و با S (مخفف slip به معنی لغزش) نمایش می‌دهند. در حالت بی‌باری سرعت روتور به سرعت سنکرون خیلی نزدیک خواهد بود و در بار نامی‌موتور لغزشی بین ۲ تا ۳ درصد خواهد داشت که در برخی موتورها این لغزش تا ۷٪ نیز می‌رسد. میزان لغزش در یک موتور جریان متناوب از رابطه زیر به دست می‌آید:

S=\frac{(N_{s}-N_{r})}{N_{s}}

که:

  • Nr سرعت روتور (r. p. m)
  • S میزان لغزش است که می‌تواند عددی بین ۱ و ۰ باشد..

[ویرایش] موتور جریان متناوب سه فاز سنکرون

اگر خروجی قطب‌های روتور به وسیله کلکتورها از موتور خارج شده و به یک منبع خارجی وصل شود به طوری که روتور نیز به نوبه خود میدانی جداگانه و مداوم را ایجاد کند به موتور موتور سنکرون یا هم‌زمان گفته می‌شود. سرعت چرخش روتور در موتورهای سنکرون همواره برابر سرعت میدان دوار است و به همین دلیل این موتورها را هم‌زمان می‌نامند.

از این موتورها می‌توان به عنوان یک ژنراتور جریان متناوب نیز استفاده کرد.

امروزه موتورهای سنکرون را اغلب به وسیله کنترل کننده‌های ترانزیستوری فرکانس راه‌اندازی می‌کنند. این موتورها همچنین می‌توانند به صورت یک موتور القایی نیز راه‌اندازی شوند به این صورت که در روتور این موتورها از میله‌های هادیی شبیه روتورهای قفسی استفاده می‌شود و پس از راه اندازی، این قسمت روتور خود به خود از مدار خارج می‌شود به این صورت که پس از رسیدن موتور به دور نامی‌مقدار ناچیزی جریان در قفس رتور القا می‌شود و بدین ترتیب تقریباً از مدار خارج می‌شود.

یکی از کاربردهای موتورهای سنکرون اصلاح ضریب توان است. در مراکز صنعتی تقریباً تمامی‌بارها (به جز موتورهای سنکرون پر تحریک) از انرژی الکتریکی به صورت پس فاز استفاده می‌کنند. بارهای پس فاز موجب به وجود آمدن اختلاف فاز در مدار شده و ضریب توان مدار را کاهش می‌دهند که این می‌تواند موجب به وجود آمدن تلفات اضافی در طول خطوط شود. به دلیل خصوصیت خاص موتورهای سنکرون می‌توان از آنها برای اصلاح ضریب توان نیز استفاده کرد، چراکه در صورتی که موتور سنکرون در حالت پر تحریک کار کند تقریباً مانند یک بار خازنی عمل کرده و از انرژی الکتریکی به صورت پیش فاز استفاده می‌کند و به این ترتیب می‌توان از یک موتور سنکرون به جای خازن‌های اصلاح ضریب توان استفاده کرد. این خصوصیت موتورهای سنکرون باعث شده که با وجود مشکلات مربوط به راه‌اندازی آنها، استفاده از آنها هنوز رایج باشد.

برخی از بزرگ‌ترین موتورهای جریان متناوب در نیروگاه‌های آب تلمبه‌ای مورد استفاده قرار می‌گیرند چراکه این موتورها به راحتی می‌توانند نقش ژنراتور را ایفا کنند و به این ترتیب در ساعات کم مصرف انرژی الکتریکی به صورت موتور عمل کرده و آب را به مخزن پر ارتفاعی پمپ کنند و سپس در ساعات پر مصرف با پایین آمدن آب به صورت ژنراتور عمل کرده و از شبکه پشتیبانی کنند. در نیروگاه آب تلمبه‌ای Bath County در ویرجینیای آمریکا از شش ژنراتور سنکرون ۳۵۰ مگاواتی استفاده شده‌است که در زمان پمپ، هرکدام می‌توانند توانی برابر ۵۶۳۴۰۰ اسب بخار (۴۲۰۱۲۷ وات) تولید کنند[نیازمند منبع].

[ویرایش] راه اندازی

موتورهای آسنکرون با توجه به قدرت و ولتاژ آن به طرق مختلف راه اندازی می‌شوند و با توجه به ‏اینکه موتور در لحظه شروع به کار جریان زیادی از منبع الکتریکی می‌کشد و این جریان زیاد علاوه بر اینکه به خود ‏موتور صدمه می‌زند به مصرف کننده‌های دیگری که از این خط مشترک تغذیه می‌شوند لطمه زده و کار آنها را ‏مختل می‌سازد‎. ‎ موتور آسنکرون معمولاً به روشهای زیر راه اندازی می‌شود در نتیجه جریان راه اندازی کم می‌شود‏‎:

به طور مستقیم‎

برای موتورهایی که بزرگ نیستند و آمپر زیادی از شبکه نمی‌‏کشند بوسیله یک کلید سه قطبی به شبکه متصل می‌شوند‎.

توسط کلید یا مدار ستاره–مثلث

ابتدا ولتاژ اولیه را که بر هر فاز متصل می‌شود، را کم می کنیم سپس ‏وقتی که موتور به دور نرمال خود رسید ولتاژی را که به هر فاز می‌رسد زیاد می‌کنیم. بنابراین در لحظه اول کلید به حالت ستاره بوده یعنی ولتاژ دو سر هر فاز به‎ u/√3 ‎تقلیل می‌یابد ‏در نتیجه موتور با توان 3/1 توان نامی‌خود کار می‌کند‏‎. استعمال کلید روی انواع موتورها با روتور قفسه‌ای یا روتور سیم پیچی امکان پذیر است. ولی در ‏موتورهایی که با بار زیاد کار می‌کنند از کلید برای راه اندازی استفاده نمی‌شود. چون گشتاور ‏مقاوم بار زیاد است‎.

توسط کمپانساتور

این وسیله راه اندازی که اتوترانسفورماتور کاهنده است بین موتور ‏و شبکه قرار می‌گیرد. این طریق راه اندازی به دلیل اینکه جریان شروع به کار و گشتاور شروع به ‏کار هر دو به یک نسبت پایین می‌آیند خیلی خوب است. ولی چون هزینه آن گران است فقط در ‏موتورهایی که قدرت زیاد دارند استفاده می‌شوند‎.

اضافه کردن مقاومت در مدار روتور

برای جلوگیری از ‏عبور جریان زیاد در موقع راه اندازی موتور می‌توان مقاومت هایی به طور سری سر راه سیم پیچی ‏های موتور قرار دارد. و به تدریج که موتور دور می‌گیرد دسته مقاومتهای راه انداز را به طرف چپ ‏حرکت داده در این صورت کم کم مقاومتها از سر راه مدار خارج می‌شود‎. این طریق راه اندازی به دلیل تلفات انرژی در مقاومتها زیاد و نیروی کشش در لحظه شروع به کار کم ‏، استعمال کمی‌دارد‎.

اضافه کردن مقاومت در مدار استاتور

تمام ‏مقاومتهای راه انداز را سر راه سیم پیچی روتور قرار داد. بدین وسیله مقاومت مدار سیم پیچی روتور ‏را به حداکثر مقدار خود میرسانند و سپس استاتور را به شبکه برق وصل می‌کنند. مقاومت روئستای ‏روتور به تدریج از مدار خارج می‌شود.موتور را باید شست.

[ویرایش] سروو موتورهای دو فاز جریان متناوب

یک سروو موتور جریان متناوب دارای یک روتور قفسی است و سیم‌پیچ آن شامل دو قسمت است: ۱) سیم پیچ اصلی ۲) سیم پیچ کمکی که از آن برای به وجود آوردن میدان دوار استفاده می‌شود. در این موتورها مقاومت روتور بالا است و بنابراین منحنی گشتاور-دور این موتورها تقریباً خطی است. به طور کلی این موتورها، موتورهایی پر سرعت و با گشتاور پایین هستند و معمولاً قبل از وصل به بار سرعت آنها به وسیله وصل به چرخ‌دنده‌ها کاهش می‌یابد.

[ویرایش] موتور با قطب سایه دار

برخی موتورهای جریان متناوب، دارای قطب سایه‌دار (چاک دار) هستند. از این قطب برای ایجاد گشتاور راه‌اندازی در موتور استفاده می‌شود. نمونه این موتورها در فن‌های الکتریکی کوچک و برخی پمپ‌های کوچک و برخی دیگر از موتورهای توان پایین دیده می‌شود. در این موتورها از یک سیم پیچ کوچک و با سطح مقطع پایین با نام سیم‌پیچ سایه‌ای استفاده می‌شود به این صورت که قسمتی از هر قطب به وسیله این سیم‌پیچ پوشیده شده‌است. طرز کار این موتورها به این صورت است که با القای الکتریکی در سیم‌پیچ‌ها به علت خاصیت سلفی سیم‌پیچ‌های سایه‌ای، این سیم‌پیچ‌ها با تغییرات جریان مخالفت می‌کنند (قانون لنز) و بنابراین یک اختلاف اندک بین جریان در سیم پیچ اصلی و سیم‌پیچ سایه‌ای ایجاد می‌شود که موجب چرخش موتور شده و از قفل شدن موتور در لحظه راه‌اندازی جلوگیری می‌کند. با افزایش سرعت روتور نیاز به وجود قطب‌های کمکی از بین می‌رود چراکه به دلیل وجود اینرسی موتور به چرخش ادامه می‌دهد.

[ویرایش] موتور القایی با انشقاق فاز

یکی دیگر از انواع موتورهای تک فاز القایی، موتور با انشقاق فاز است که نسبت به موتور با قطب سایه‌دار کاربردهای مهم‌تری دارد. از جمله کاربردهای این موتورها می‌توان به موتورهای مورد استفاده قرار گرفته در ماشین‌های لباسشویی و خشک‌کن‌ها اشاره کرد. در مقایسه با موتورهای با قطب سایه‌دار این موتورها گشتاور راه‌اندازی خیلی بیشتری دارند و این به دلیل استفاده از سیم‌پیچ راه انداز است. این سیم‌پیچ راه‌انداز معمولاً پس از راه‌اندازی کامل موتور به وسیله یک کلید گریز از مرکز از مدار خارج می‌شود.

در موتورهای انشقاق فاز، سیم‌پیچ راه انداز همیشه با مقاومت بیشتری نسبت به سیم‌پیچ اصلی ساخته می‌شود و به این ترتیب نسبت المان‌های سلفی و مقاومتی در هر سیم پیچ متفاوت است، همچنین تعداد دور سیم‌پیچ کمکی کمتر از سیم‌پیچ اصلی است که این موجب کاهش خاصیت سلفی این سیم‌پیچ می‌شود. بنابراین این سیم‌پیچ نسبت به سیم‌پیچ اصلی دارای مقاومت بیشتر و اندوکتانس کمتر است. کمتر بودن نسبت L به R موجب به وجود آمدن اختلاف فاز در دو سیم‌پیچ می‌شود که معمولاً بیشتر از ۳۰درجه نیست. این اختلاف فاز موجب چرخش موتور در لحظه راه‌اندازی می‌شود. پس از راه‌اندازی به علت وجود اینرسی موتور به چرخش خود ادامه می‌دهد و به این ترتیب نیازی به سیم‌پیچ کمکی نخواهد بود به همین دلیل سیم‌پیچ کمکی به وسیله کلید گریز از مرکز از مدار خارج می‌شود و به این ترتیب از ایجاد تلفات اضافی به وسیله سیم‌پیچ کمکی جلوگیری می‌شود.

[ویرایش] موتورهای جریان متناوب با خازن راه‌انداز

در موتورهایی که از خازن برای راه اندازی استفاده می‌کنند از یک خازن که با سیم‌پیچ کمکی سری شده استفاده می‌شود. این خازن در واقع وظیفه ایجاد اختلاف فاز بین سیم‌پیچ‌ها را بر عهده دارد. اختلاف فاز ایجاد شده توسط خازن‌ها در لحظه راه‌اندازی خیلی بیشتر از نوع قبلی است و بنابراین میزان گشتاور راه‌اندازی این موتورها نیز بیشتر است و البته هزینه این موتورها نیز بیشتر است.

[ویرایش] موتورهای خازنی با خازن ثابت

نوع دیگری از موتورهای جریان متناوب موتورها با خازن ثابت یا موتورهای PSC هستند. این موتورها دقیقاً مانند موتورهای خازنی که در بالا توضیح داده شد عمل می‌کنند با این تفاوت که فاقد کلید گریز از مرکز بوده و بنابراین خازن در این موتورها هنواره در مدار است. موتورهای با خازن ثابت به طور گسترده‌ای در فن‌ها، دمنده‌ها و سیستم‌هایی که تغییر سرعت برای آنها مطلوب است استفاده می‌شوند. در برخی موارد که نیاز به استفاده از یک موتور سه فاز به صورت تک فاز است با اتصال یک خازن به یکی از فازها و سری کردن دوفاز دیگر می‌توان از موتور سه فاز به صورت تک فاز استفاده کرد که البته در این حالت گشتاور موتور کاهش می‌یابد.

[ویرایش] موتور پولزیون

موتور پولزیون یا موتور دفع کننده نوعی موتور تک فاز جریان متناوب است. روتور این موتورها سیم‌پیچی شده و تا حدودی شبیه موتورهای یونیورسال هستند. در گذشته تعدادی از این موتورها ساخته می‌شد اما استفاده از موتورهای RS-IR (راه‌انداز دفع کننده-حرکت القایی) به نسبت رایج تر بود. موتورهای RS-IR دارای یک کلید گریز از مرکز هستند که پس از رسیدن به سرعت نامی‌تمام کلکتورها را به هم وصل کرده و روتور را به صورت یک روتور قفسی در می‌آورد بنابر این موتور در هنگام کار مانند یک موتور روتور قفسی عمل می‌کند. از موتورهای RS-IR در مواردی استفاده می‌شده که نیاز به وجود گشتاور راه‌اندازی بالا در دمای پایین و تنظیم ولتاژ اندک بوده. امروزه این نوع موتورها ساخته نمی‌شوند.

[ویرایش] موتور سنکرون جریان متناوب تک فاز

موتورهای سنکرون تک فاز کوچک به جای ایجاد میدان مغناطیسی به وسیله یک منبع خارجی از آهنرباهای کوچک برای ایجاد میدان استفاده می‌کنند. بنابراین روتور این موتورها نیازی به جریان القا کننده نخواهد داشت. خصوصیت اصلی این موتورها سرعت ثابت آنهاست به طوریکه اغلب در وسایلی از آنها استفاده می‌شود که نیاز به سرعتی ثابت دارند. این موتورها در ساعت‌ها، دیسک گردان‌ها، ضبط صوت‌ها و برخی دیگر از تجهیزات دقیق مورد استفاده قرار می‌گیرد.


  نوشته شده در  سه شنبه پنجم بهمن 1389ساعت 15:41  توسط korosh  | 
 

چگونگی کار ژنراتور
Tc 43 رادیوایزوتوپ دختر مولیبدن Mo است. Mo با نیم عمر 67 ساعت شناخته  می شود. با فروپاشی هسته های مادر Mo ، هسته های دختر Tc تولید می گردد. ایزوتوپهای دختر پس از تشکیل با نیم عمر 6 ساعت واپاشی  می شوند. در این جا ما با گونه ای از ترازمندی گذرا برخورد می کنیم که نیم عمر مادر بیش از 10 بار از نیم عمر دختر بیشتر است ( T1> T2 ). اگر منحنی تغییرهای اکتیویته مادر و دختر را رسم کنیم دیده می شود که  اکتیویته دختر پس از نزدیک به 4 نیم عمر، با اکتیویته مادر به تعادل یا ترازومندی می رسد و در نقطه ترازمندی اکتیویته دختر نزدیک به اکتیویته مادر است. بنابراین اگر جدا ساختن این دو رادیوایزوتوپ امکان داشته باشد می توان نزدیک به اکتیویته مولیبدن اکتیویته تکنسیوم بدست آورد. روشن است که هیچ گاه اکتیویته دختر از مادر بیشتر نخواهد بود.
در ژنراتور Mo  TC ،Mo به صورت پودر در ستونی از اکسید آلومینیوم Al2O3 وجود دارد. اکتیویته Mo نزدیک به ( 100 mCi ) 3 GBq می باشد. در ترازمندی میان مادر و دختر اگر محلول Nacl نرمال از ستون گذرانده شود Tc در آن حل می شود ولی مولیبدن در آن حل نمی شود. در این کار Tc شسته شده و می تواند گردآوری شود. در هر شستشو بخشی از Mo نیز در ظرف جمع میشود که از 1/1000 اکتیویته دختر کمتر است. کار شستشو یا دوشیدن(milking) ژنراتور ( Cow ) به گونه استریل باقابلیت  تزریق در رگ انجام می گیرد. اگر به Tc نیاز باشد و اگر پیش از حالت ترازمندی مادر و دختر کار دوشیدن انجام شود اکتیویته دختر به دست آمده کمتر خواهد بود.
پس از دوشیدن ، اکتیویته دختر نزدیک به صفر می رسد و تولید دختر در همان زمان آغاز می شود. کاردوشیدن تا 5 بار برای ژنراتور Mo – Tc انجام می گیرد و پس از آن ژنراتور به درد نمی خورد. در هر دوشیدن اگر ترازمندی وجود داشته باشد تا 90%  اکتیویته ژنراتور می تواند به دست آید. اکتیویته ها نزدیک به GBq 3، در روز نخست ترازمندی، 2GBq روز دوم، 1.5GBq روز سوم و ... بدست می آید. اگر نیاز باشد ژنراتور را می توان تا سه بار در روز دوشید.

  نوشته شده در  یکشنبه چهارم بهمن 1388ساعت 16:50  توسط korosh  | 

سلول خورشیدی یا سلول فوتوولتاییک ابزاری است که انرژی خورشیدی را تحت اثر فوتوولتاییک به الکتریسیته مبدل می‌کند. فن‌آوری فوتوولتاییک شاخه‌ای از فن‌آوری است که به کاربرد سلول‌های خورشیدی می‌پردازد. گاهی اصطلاح سلول خورشیدی تنها برای ابزارهایی به کار می‌رود که مختص تبدیل انرژی نور خورشید هستند، در حالی که عبارت سلول فوتوولتاییک به صورتی عام‌تر به کار می‌رود. سازه‌ای که از کنار هم چیدن سلول‌های خورشیدی به دست می‌آید را واحد خورشیدی گویند که خود این سازه‌ها را می‌توان به هم متصل ساخت تا آرایه‌ی فوتوولتاییک به دست آید.

سلول‌های خورشیدی کاربرد بسیاری دارند. سلول‌های تکی برای فراهم کردن توان لازم دستگاه‌های کوچک‌تر مانند ماشین حساب الکترونیکی به کار می‌روند. آرایه‌های فوتوولتاییک الکتریسیتهٔ بازیافت‌شدنی‌ای را تولید می‌کنند که عمدتاً در موارد عدم وجود سیستم انتقال و توزیع الکتریکی کاربرد دارد. برای مثال می‌توان به محل‌های دور از دسترس، ماهواره‌های مدارگرد، کاوش‌گرهای فضایی، ساختمان‌های مخابراتی دور از دسترس واستعمال در دستگاههای پمپ آب اشاره کرد. علاوه بر این، استفاده از این نوع انرژی امروزه در محل‌هایی که شبکهٔ توزیع هم موجود است مرسوم شده‌است.

توضیح ساده

سلول خورشیدی
سلول خورشیدی

1. فوتون‌های موجود در نور خورشید به صفحه‌ی خورشیدی برخورد می‌كنند و بوسیله جسم نیمه‌رسانایی مانند سیلسكون جذب مر‌شوند.

2. الكترون‌هایی(دارای بار منفی) كه تحت تأثیر برخورد فوتون‌ها قرار گرفته‌اند، فرصت می‌یابند كه برای تولید الكتریسیته در ماده جریان یابند. با توجه به ساختار ویژه سلول‌های خورشیدی، الكترون‌ها فقط می‌توانند در یك جهت حركت كنند.بارهای مثبت مكملی هم تشكیل می‌شوند(مثل حباب) كه حفره‌ (الكترونی) نام دارند و در جهتی خلاف جهت الكترون‌ها در صفحه‌ی خورشیدی سیلیكونی جریان می‌یابند.

3. آرایه‌ی صفحه‌های خورشیدی، انرژی خورشیدی را به میزان(مقدار) قابل استفاده‌ای از جریان مستقیم الكتریسیته(برق) تبدیل می‌كند.



تولید نور توسط حاملان بار

وقتی فوتونی به قسمتی از سیلسكون برخورد می‌كند، یكی از سه مورد زیر ممكن است اتفاق بیفتد: 1. فوتون می‌تواند به طور مستقیم از سیلیكون عبور كند- این مورد(معمولاً) برای فوتون‌هایی با انرژی كمتر اتفاق می‌‌افتد.

2. فوتون می‌تواند از سطح منعكس شود.

3. در صورتی كه انرژی فوتون از مقدار (انرژی) فاصله‌ی لایه بیشتر باشد، می‌تواند توسط سیلسكون جذب شود.این رویداد یك جفت حفره‌ی الكترونی و گاهی نیز گرما ایجاد می‌كند كه این نحوه‌ی تولید بستگی به ساختار شبكه دارد.

وقتی فوتونی جذب می‌شود، انرژی‌اش به الكترون‌ موجود در شبكه‌ی بلوری منتقل می‌شود.این الكترون معمولاً در لایه‌ی ظرفیت وجود دارد و با نیروی زیادی توسط پیوندهای كوالانسی موجود بین اتم‌های مجاور، محدود شده است. بنابراین نمی تواند خیلی دور شود. انرژی داده شده به آن توسط فوتون، الكترون را برای مهاجرت به لایه‌ی هدایت، جایی كه بتواند به راحتی درون جسم نیمه رسانا حركت كند، برانگیخته می‌كند. پیوند كوالانسی كه قبلاً الكترون بخشی از آن بود اكنون یك الكترون كمتر دارد- كه این همان حفره(الكترونی) است.

كمبود الكترون در پیوند كوالانسی این فرصت را به الكترون‌های بسته در اتم‌های مجاور می دهد كه به درون حفره‌ای وارد شوند،حفره‌ی دیگری راپشت سر بگذارند و به این ترتیب یك حفره می‌تواند در طول شبكه حركت كند. بنابراین می‌توان گفت كه فوتون‌های جذب شده در جسم نیمه رسانا جفت حفره‌های الكترونی‌ سیار(متحرك) ایجاد كنند. یك فوتون برای اینكه بتواند الكترون را برای مهاجرت از لایه‌ی ظرفیت به لایه‌ی هدایت برانگیخته كند تنها نیاز به این دارد كه انرژی‌ای بسیار بیشتر از (انرژی) فاصله‌ی (شكاف) لایه داشته باشد.

اگرچه، طیف فركانس خورشیدی به محدوده‌ی طیف جسم سیاه در 6000 می‌رسد، با این حال بیشتر پرتوهای خورشیدی كه به زمین می‌رسند از فوتون‌هایی تشكیل شده‌اند كه انرژی‌ای بسیار بیشتر از (انرژی) فاصله‌ی (شكاف) لایه در سیلسكون دارند. این فوتون‌ها كه دارای انرژی زیادی هستند می‌توانند توسط سلول‌های خورشیدی جذب شوند، اما اختلاف انرژی بین این فوتون‌ها و فاصله(شكاف) لایه سیلیكونی بیش از آنكه تبدیل به انرژی الكتریسیته‌ی قابل استفاده‌ای شود، به گرما (بوسیله‌ی ارتعاش شبكه كه فونون نام دارد) مبدل می‌شود.

تفكیك حاملان بار

دو روش عمده برای تفكیك حاملان بار در یك سلول خورشیدی وجود دارد: 1. جابجایی حاملان بوسیله‌ی میدان الكتریكی موجود در داخل دستگاه

2. نفوذ(انتشار) حاملان بار از بخش با تجمع بیشتر به بخش با تجمع كمتر

درسلول‌های خورشیدی پركاربرد دارای پیوند p-n ،عمده‌‌ترین روش برای جداسازی حاملان بار استفاده از جابجایی می‌باشد. اما در سلول‌های خورشیدی بدون پیوند p-n ( نمونه‌ای از نسل سوم پژوهش درباره‌ی سلول‌های خورشیدی مانند رنگ و سلول‌های خورشیدی با غشای نازك پلیمری) وجود میدان الكتریكی عمومی تأیید نشده است و روش كنونی جداسازی، از طریق نفوذ حاملان بار امكان پذیر می‌باشد.

پیوند p-n

رایج ترین سلول خورشیدی شناخته شده از یك پیوند p-n قوی از جنس سیلسكون تشكیل شده است.به بیان ساده‌تر، می‌توانید تصور كنید كه لایه‌ای از نوع n سیلسكون در تماس مستقیم با لایه‌ای از نوع p قرار می‌گیرد. در عمل، پیوندهای p-n سیلسكونی سلول‌های خورشیدی با این روش ساخته نمی‌شوند بلكه با تزریق یك نوع n به قسمتی از قطعه‌ی سیلسكونی نوع p (یا برعكس) انجام می‌گیرد. اگر قطعه‌ای از سیلسكون نوع p در مجاورت قطعه‌ی دیگری از نوع n قرار گیرد، در نتیجه‌ی آن الكترون‌ها از بخش با تجمع الكترونی بیشتر (بخش نوع n پیوند) به بخش با تجمع الكترونی كمتر (بخش نوع p پیوند) نفوذ می‌كنند.(انتشار می‌یابند) وقتی الكترون‌ها در میان پیوند p-n نفوذ كنند، با حفره‌های بخش نوع p جفتگیری می‌كنند. نفوذ حاملان به طور قطعی اتفاق می‌افتد، اگرچه به خاطر میدان الكتریكی‌‌ای است كه در اثر به هم خوردن بلافاصله‌ی تعادل بین بارها در دو طرف پیوند تشكیل شده است كه این عدم تعادل را نیز همان نفوذ به وجود آورده است. میدان الكتریكی بوجود آمده در پیوند p-n تشكیل یك دیود می‌دهد كه این دیود باعث افزایش شدت جریان می‌شود تا جریان را فقط در یك جهت در طول پیوند عبور دهد. الكترون‌ها می‌توانند از بخش نوع nبه بخش نوع p بروند وحفره‌ها نیز از بخش نوع p به بخش نوع n بروند اما نمی‌توانند در جهات دیگر حركت كنند. این ناحیه را كه الكترون‌ها در پیوند نفوذ كرده‌اند لایه‌ی تهی می‌نامند زیرا شامل هیچگونه حامل بار متحركی نمی‌شود. همچنین به عنوان " ناحیه‌ی دارای بار" نیز شناخته می‌شود.


اتصال به بار خارجی

جسم اهمی- اتصالات نیمه رسانایی هم برای بخش نوع n ونوع p سلول خورشیدی و هم برای الكترون‌های متصل به بار خارجی ساخته شده است. الكترون‌هایی كه روی بخش نوع n تشكیل می‌شوند و یا بوسیله‌ی پیوند دریافت شده‌اند و به بخش نوع n متمایل شده‌اند می‌توانند در طول سیم حركت كنند، به بار خارجی اعمال ولتاژ كنند و به حركت خود در طول سیم ادامه دهند تا به جسم نیمه رسانای نوع p اتصال یابند. در اینجا آنها با حفره‌ای كه به عنوان جفت حفره‌ی الكترونی روی بخش نوع p سلول خورشیدی بوجود آمده بود، جفتگیری می‌كنند یا بعد از تشكیل از بخش نوع n به سمت پیوند متمایل می‌شوند.


  نوشته شده در  جمعه دوم بهمن 1388ساعت 16:48  توسط korosh  | 

موتور القايي AC با قطب سايه دار

موتورهاي با قطب سايه دار فقط يك پيچه اصلي دارند و پيچه استارت ندارند.استارت خوردن بوسيله طرح خاص آن كه حلقه پيوسته مسي اي را دور قسمت كوچكي از هر قطب موتور حلقه مي كند انجام مي شود.اين سايه كه قطب را دو تكه مي كند سبب مي شود كه ميدان مغناطيسي اي ضعيفتر در ناحيه سايه خورده نسبت به قسمت ديگر و در كنار آن بوجود آيد.تعامل ميان ميدانها محور را به چرخش وامي دارد.
چون موتور با قطب سايه خورده پيچه استارت , سوئيچ استارت ويا خازن ندارد از نظر الكتريكي ساده و ارزان است.همچنين سرعت آن راصرفا با تغيير ولتاژ يا بوسيله يك پيچه با چند دور مختلف مي توان كنترل كرد.


ساخت موتور با قطب سايه خورده از نظر مكانيكي اجازه توليد انبوه را ميدهد.درحقيقت اين موتورها به موتورهاي يك بار مصرف معروفند.بدين معني كه جايگزين كردن آنها ارزانتر از تعمير آنهاست.



موتورهاي با قطب سايه دار بسياري مشخصات مثبت دارند.اما چندين مورد بي فايدگي هم دارند.گشتاور استارت كم آن معمولا 25 تا 75 درصد گشتاور برآوردي است.اين موتور موتوري با اتلاف بالاست كه سرعتي حدود 7 تا 10 درصد سرعت سنكرون دارد.عموما بازده اين نوع موتور بسيار پايين است (زير 20 درصد).
هزينه اوليه پايين آن را براي قدرت كمتر يا كاربردهاي با كار كمتر مناسب مي سازد.شايد وسيعترين استفاده از آنها در فنهاي چند سرعته براي استفاده خانگي است.ولي گشتاور كم موتور داراي قطب سايه دار را براي بيشتر كاربريهاي صنعتي يا تجاري كه در آنها كار مداوم يا چرخه هاي گردش بيشتر معمول است غير قابل استفاده مي كند.شكل 9 منحني سرعت - گشتاور را براي انواع موتور القايي AC تك فاز نشان مي دهد.



موتور القايي AC سه فاز

موتورهاي القايي AC سه فاز به طور گسترده در كاربريهاي تجاري و صنعتي استفاده مي شوند.آنها هم به عنوان موتورهايي با روتور پيچ خورده يا قفس سنجابي دسته بندي مي شوند.
اين موتورها خود استارت هستند و از هيچ خازن يا پيچه استارت يا سوئيچ گريز از مركز يا دستگاه آغازگري استفاده نمي كنند.
آنها گشتاور آغازين در درجه هاي متوسط يا بالا توليد مي نمايند.محدوده نيروي توليدي و بازده اين موتورها از متوسط تا بالا با مشابه هاي تك فازشان مقايسه مي شود.استفاده هاي عمومي آنها مانند آسيابها (و ليث ها دستگاه برنده و فرم دهنده چوب و فلز) مته فشاري پمپها كمپرسورها تسمه نقاله ها همچنين دستگاههاي چاپ دستگاههاي مزرعه سرمايش در الكترونيك و ديگر كاربريهاي مكانيكي است.

موتور قفس سنجابي

تقريبا 90 درصد موتورهاي القايي AC سه فاز از اين نوعند.كه روتور آنها از نوع قفس سنجابي است كه در ابتدا توضيح داده شد.محدوده هاي طبقه بندي نيروي آنها از يك سوم تا چند صد اسب بخار است.موتورهاي اين نوعي كه در دسته يك اسب بخار به بالا اند در مقايسه با مشابه هاي تك فاز كم هزينه ترند و ميتوانند در استارت در فشارهاي سنگينتر بكار كنند.

موتور با روتور پيچشي

موتور با حلقه لغزان يا موتور روتور پيچشي نوعي از موتور القايي قفس سنجابي است.درحالي كه استاتور در اين موتور همانند موتور قفس سنجابي است يك سري از پيچه ها را روي روتور خود دارد كه در حالت مداركوتاه نيستند ولي به يك سري از رينگهاي لغزان ختم مي شوند.اين پيچه ها در اضافه كردن مقاومتها و خازنهاي خارجي سودمندند.اسليپ لازم براي توليد گشتاور بيشينه نهايي مستقيما با مقاومت روتور متناسب است.در موتور با حلقه لغزان مقاومت موثر روتور با اضافه كردن مقاومت خارجي ميان حلقه هاي لغزان كاهش ميابد.
بنابراين امكان بدست آوردن لغزش بيشتر و همچنين گشتاور بيشينه نهايي در سرعتهاي كمتر وجود دارد.
يك مقاومت خارجي مي توانددر سرعت تقريبا صفر را نتيجه دهد كه گشتاو بيشينه نهايي بسيار زيادي با جريان استارت كم را توليد مي كند.هنگامي كه موتور شتاب مي گيرد مقدار مقاومت مي تواند كاهش يابد تا مشخصات موتور براي كارهايي با فشار زياد مناسب شود.هنگامي كه موتور به سرعت اصلي ميرسد خازنهاي خارجي از مدار خارج مي شوند و اين يدين معني است كه اكنون موتور به عنوان يك موتور القايي استاندارد كار مي كند.
اين نوع موتور براي فشارهاي مانا (كارهايي با فشار ثابت) كه درآنها گشتاور نهايي بايد در سرعت تقريبا صفر توليد شده و موتور دركمترين زمان و با كمترين مصرف جريان تا سرعت بيشينه شتاب گيرد ايده آل است.***



قسمت پاييني موتور با حلقه لغزان كه در آن حلقه ها به همراه مجموعه براشها است به نگهداري منظم نياز داردكه از نظر قيمت , استاندارد بودن آن را به عنوان يك موتور قفس سنجابي غير ممكن مي كند.اگر پيچه ها كوتاهتر شوده و استارت زده شود معمولا جريان بالااز روتور در حالت متوقف عبورمي كند كه در حد 1400 درصد است.درحاليكه در اين حالت درآن گشتاوري در حد 60درصد توليد مينمايد كه در بسياري از كاربريها چنين امكان پشتيباني چنين چيزي نيست.با تغيير مقاومتهاي روتور منحني سرعت گشتاور تعديل مي گرددكه بدان وسيله سرعتي كه درآن موتور در فشاري مخصوص كارمي كند تعديل مي شود.ظرفيت تكميل فشار ميتواند سرعت را تا 50درصد سرعت سنكرون كاهش دهد.خصوصا هنگامي كه فشار , از انواعي با نياز به گشتاور – سرعتهاي مختلف مثل پرسهاي چاپ يا كمپرسورها است.كاهش سرعت تا زير 50درصد بازده را به خاطر اتلاف انرژي در مقاومتها به شدت كاهش ميدهد.اين نوع موتور در كاربريهايي با چرخش با گشتاور و سرعتهاي مختلف مانند پرسهاي چاپ , كمپرسورها , تسمه نقاله ها , بالابرنده ها و آسانسورها مورد استفاده قرار مي گيرد.

معادله كنترل گشتاور عملكرد موتور

سيستم بار موتور ميتواند بوسيله معادله اساسي زير بيان شود.



براي چرخشهايي با ماند ثابت داريم:



اين نشان ميدهد كه گشتاور ايجادشده توسط موتوربا گشتاوربار نسبت عكس دارد.
مولفه گشتاور  گشتاور پويا ناميده مي شود زيرا فقط در اعمال زودگذر و آني ظاهر ميشود.اينكه چرخش تسريع يا كند ميشود به اين بستگي دارد كه T از T1 بزرگتر يا كوچكتر باشد.در هنگام شتاب گيري موتور نبايد تنها گشتاور بار راتغذيه كند بلكه بايد مولفه گشتاور اضافي اي را  براي چيره شدن به اينرسي داشته باشد.در درايوهايي با اينرسي بزرگ مانند قطارهاي الكتريكي گشتاور موتور براي مقدار بسيار كافي شتابگيري بايد از گشتاور بار تجاوز كند.در درايوهايي با نياز به واكنش سريع گشتاور موتور بايد در بالاترين مقدارنگه داشته شده و سيستم بار موتور با كمترين مقدار ممكن اينرسي طراحي شده باشد.انرژي مربوط به گشتاور پويا  بصورت انرژي جنبشي (KE) بوجود آمده  ذخيره مي شود.در زمان شتابگيري گشتاور پويا  علامت منفي دارد.ازين رو به گشتاور توليدي موتور T و حفظ تحرك چرخش بوسيله استخراج انرژي از انرژي جنبشي ذخيره شده كمك مي كند.
براي خلاصه , براي حالت دائمي چرخش موتورگشتاوري توليدي موتورT بايد هميشه با گشتاور لازم بارT1 برابر باشد.
منحني سرعت گشتاور موتور القايي سه فاز معمولي در شكل 11 نشان داده شده است.

ويژگي استارتينگ

موتورهاي القايي درحالت خاموش مانند يك ترانسفورماتور درمدار كوتاه عمل مي كنند و اگر كاملا به منبع ولتاژ متصل شوند جرياني بسيار بزرگ مي كشند كه اين جريان به جريان روتور قفل شده معروف است. همچنين گشتاوري توليد مي كند كه به گشتاور روتور قفل شناخته مي شود.گشتاور روتور قفل (LRT) و جريان روتور قفل (LRC) تابع ولتاژ پايانه و تابع طراحي آن مي باشند.هنگامي كه موتور شتاب مي گيرد اگر ولتاژ ثابت نگه داشته شود هردوي گشتاور و جريان تلاش مي كنند كه سرعت روتور را تغير دهند.
جريان استارت يك موتور با ولتاژ ثابت با شتاب گرفتن موتوربطوربسيار آهسته كاهش ميابد و صرفا روند نزولي ميابد.به خصوص وقتي كه موتور به 80 درصد سرعت كامل خود ميرسد.منحنيهاي واقعي براي موتورهاي القايي ميتوانند ميان طراحي هاي مختلف بسياربسيارمتفاوت باشند ولي عموما گرايش آنها به جريان بالاست تا وقتي كه متور تقريبا به سرعت كامل ميرسد.LRC يك موتور ميتواند در محدوده از500 درصد تا 1400 درصد جريان ظرفيت تكميل (FLC) باشد.معمولا موتورهاي خوب در محدوده 550 تا 750درصد از FLC مياشند.
گشتاور استارت يك موتور القايي كه با ولتاژ ثابت آغاز به كار مي كند , كمي به گشتاور كمينه افت مي كند كه به Pull-Up torque شناخته مي شود.و با شتاب گرفتن موتور در تقريبا سرعت بيشينه به يك گشتاور بيشينه افزايش يافته كه به گشتاور شكست يا Pull-Out torque معروف است و سپس در سرعت سنكرون به صفر نزول مي كند.منحني گشتاور استارت برخلاف سرعت روتور به ولتاژ پايانه و طراحي روتور بستگي دارد.
LRT يك موتور القايي ميتواند از مقدار كم 60 درصد FLT تا 350 درصد آن تغيير كند.Pull-Up torque نيز مي تواند به كمي 40 درصد FLT و گشتاور شكست هم مي تواند تا حد 350 درصد FLT باشد.معمولا LRT ها براي موتورهاي بزرگ تا متوسط دستورا 120 تا 280 درصد FLT ميباشد.ضريب توان (PF) با شتاب گرفتن موتور از استارت از .1 تا .25  به مقدار بيشينه افزايش يافته وسپس با رسيدن موتور به سرعت نهايي دوباره سقوط مينمايد.

ويژگي عملكرد

هنگامي كه موتوربه سرعت خود سرعتي كه به تعداد قطبهاي استاتور مربوط است رسيده است در ميزان خطاي كمي نسبت به سرعت سنكرون(Slip) كار مي كند.معمولا ميزان اين كاستي براي يك موتور قفس سنجابي كمتر از 5 درصد است.اسليپ حقيقي نوع خاصي از موتور به طراحي آن بستگي دارد.معمولا سرعت اصلي يك موتور القايي چهار قطبي بين 1420 تا 1480 دور در دقيقه در فركانس 50 هرتز متغير است.در حالي كه سرعت سنكرون 1500 دور در دقيقه در فركانس 50 هرتز است.
ولتاژ كشيده شده توسط موتور القايي دو جزء دارد:جزءانفعالي (جريان مغناطيسي سازي) و مولفه موثر (جريان كاري).جريان مغناطيسي سازي مستقل از بار ولي وابسته به طراحي و ولتاژ استاتور مي باشد.جريان مغناطيسي سازي حقيقي موتور القايي مي تواند از مقدار كم 20 درصد FLC براي دستگاه بزرگ دو پل تا بزرگي 60 درصد براي نمونه كوچك هشت پل متغير باشد.جريان كاري موتوربا بار نسبت مستقيم دارد.
گرايش دستگاههاي بزرگ و پرسرعت به ارائه دادن جريان مغناطيسي سازي كم است درحالي كه گرايش ماشينهاي كوچك و كم سرعت به جريان بالاي مغناطيسي سازي ميباشد.يك موتور معمولي در سايز متوسط و با چهار پلجريان مغناطيسي سازي اي معادل 33 درصد FLC دارد.
يك جريان كم مغناطيسي سازي اتلاف كم آهن را دربردارد در حالي كه جريان بزرگ مغناطيسي سازي افزايش در اتلاف آهن و درنتيجه كاهش بازده عملكرد را در پي دارد.
معمولا بازده عملكرد يك موتور القايي در سه چهارم ظرفيت حداكثر است و از 60درصد براي موتورهاي كوچك كم سرعت تا بيش از 92درصد براي موتورهاي بزرگ پرسرعت متنوع است.ضرايب توان و بازده ها عموما در مشخصات موتورها ذكر شده است.

مشخصه بار

در واقعيت كاربريهايي با مقادير مختلف بار با منحنيهاي مختلف سرعت گشتاور وجود دارد.براي نمونه: گشتاور ثابت با بار با سرعت متغير(در كمپرسورهاي پيچشي تسمه نقاله ها تغذيه كننده ها) , گشتاور متغير با بار با سرعت متغير(در فن , پمپ) , توان بار ثابت(در محركهاي انقباضي) , توان و گشتاور بار ثابت(در محركهاي سيم پيچي) و گشتاور بالاي استارت و دورگرفتن ناگهاني كه در گشتاور ثابت بار(در پمپهاي پيچشي , فشرده سازها) مشاهده مي شود.
گفته مي شود سيستم بار موتور پايدار است هرگاه گشتاور توليدي موتور با گشتاور مورد نياز بار برابر باشد.در اين حالت موتور در يك سرعت ثابت در حالتي مانا كار مي كند.پاسخگويي موتور به هر اختلال ايده اي در مورد پايداري سيستم بار آن به ما ميدهد.اين مفهوم به ما در انتخاب سريع نوع موتور براي كاربري خاصي كمك مي كند.
در بيشتر كاربريها , واحد زماني الكتريكي در مقابل واحد زماني مكانيكي آن ناچيز است.ازين رو درهنگام اعمال آني ميتوان موتور را در تعادل الكتريكي فرض كرد كه بر اينكه منحني سرعت – گشتاور حالت پايدار براي اعمال آني نيز صادق است دلالت دارد.
بعنوان نمونه شكل 12 منحنيهاي سرعت – گشتاور موتوري با دو بار مختلف نشان ميدهد.ميتوان سامانه را بعد از به حالت اول بازگشتن پس از كمي تغيير به سبب اختلالي در موتور يا بار ثابت ناميد.
براي نمونه اختلال سبب كاهش   در سرعت ميشود.درحالت اول در سرعتي جديد گشتاور موتور T از گشتاور بار T1 بزرگتر است.بنابراين موتور شتاب گرفته و عمليات به X باز خواهد گشت.به طور مشابه افزايش  در سرعت كه بوسيله يك اختلال بوجود ميايد و گشتاور بار را از گشتاور موتور بيشتر خواهد كرد كاهش سرعت موتور وبازگشت حالت عمليات به نقطه X را نتيجه ميدهد.بنابراين سيستم در نقطه X پادار است.
در حالت دوم كاهش سرعت سبب بيشتر شدن گشتاور بار از گشتاور مووتور ميشود.چرخش كل كند شده و حالت دستگاه از نقطه Y دور ميشود.به طور مشابه افزايشيدر سرعت گشتاور موتور را از گشتاور بار فزوني داده كه موجب دور شدن بيشتر حالت دستگاه از نقطه Y ميشود.بنابر اين سامانه در نقطه Y ناپايدار است.
اين نشان ميدهد كه موتور انتخاب شده براي كاربري در حالت اول صحيح است و انتخاب دوم انتخابي اشتباه ميباشد و براي عمل مورد نظر بايد تغيير كند.



انوع بار با منحنيهاي سرعت – گشتاورشان در زير توضيح داده شده اند.


بارهاي با سرعت متغير و گشتاور ثابت

گشتاوري كه اين نوع بارها نيازدارند صرفنظر از سرعت , ثابت اند.درمقابل نيرو با سرعت نسبت خطي دارد.دستگاههايي نظير كمپرسورهاي پيچشي , تسمه نقاله ها و تغذيه گرها(سوخت رسانها) چنين مشخصات باري دارند.



بارهاي با گشتاور متغير و سرعت متغير

اين عمومي ترين نوع بار درصنايع بوده و بيشتر اوقات به عنوان بار با گشتاور نمايي شناخته ميشود.درحالي كه نيرو مكعب سرعت است گشتاور مربع سرعت ميباشد.اين مشخصات معمول سرعت – گشتاور يك فن يا پمپ است.



بارهاي با توان ثابت

اين نوع بار كمياب است ولي گاهي در صنايع مورد استفاده دارد.درحالي كه گشتاور تغيير مي كند توان ثابت استگشتاور با سرعت نسبت عكس داشته كه به طور نظري گشتاور بينهايت در سرعت صفر و سرعت بينهايت در گشتاور صفر را در بر دارد.در عمل هميشه به مقدار متناهي گشتاور شكست نياز است.اين نوع بار مشخصه محرركهاي انقباضي است كه براي شتابگيري اوليه به گشتاور بالا در سرعت پايين و گشتاوري بسيار كاهش يافته در هنگام كاركرد نياز دارد.



بارهاي با توان ثابت و گشتاور ثابت

اين نوع بار در كارخانه كاغذ استفاده ميشود.در اين نوع بار درحاليكه سرعت افزايش ميابد , گشتاور ثابت مانده و توان بشكل خطي افزايش ميابد.هنگامي كه گشتاور شروع به كاهش مي كند آنگاه توان ثابت مي ماند.



گشتاور استارت و دورگيري بالا و در ادامه گشتاور ثابت

اين نوع بار با گشتاوري بسيار بالا در بسامدهايي نسبتا كم مشخص ميشود.در كاربريهايي نظير فشرده سازها و پمپهاي پيچشي.



استانداردهاي موتور

درسراسر جهان استانداردهاي مختلفي براي تبيين كاربريها و پارامترهاي ساختماني يك موتور موجود است.دو نوع استاندارد كه بيش از همه مورد استفاده قرار مي گيرد عبارتند از:NEMA (انجمن ملي سازندگان الكتريكي) و IEC (كميته بين المللي الكتروتكنيكي).


NEMA

NEMA براي بسياري از محصولات الكتريكي شامل موتورها استاندارد قرار ميدهد.NEMA اصولا استاندارد موتورهاي مورد استفاده در آمريكاي شمالي است.استانداردهاي معتبر لياقتهاي عمومي صنعتي را بيان مي كنند و بوسيله جامعه الكتريكي پشتيباني ميشوند.اين استانداردها را مي توان در نشريه شماره MG1 NEMA يافت.ممكن است بعضي موتورهاي بزرگ AC تحت اين استاندارد قرار نگيرند.اين موتورها براي مواجهه با نياز در نوع خاصي از كاربري ساخته شده اند كه جزء موتورهاي NEMA محسوب نميشوند.***


IEC

IEC سازماني اروپايي است كه استانداردهاي الكتريكي و مكانيكي را از بين همه چيز براي موتورها در سراسر جهان منتشر ميكند و ترفيع مي دهد.در شرايط عادي ميتوان گفت كه IEC همتاي بين المللي NEMA ميباشد.دربسياري ازكشورها موتورهاي مورد استفاده تحت استاندارد IEC ميباشند.اين استانداردها را ميتوان در IEC 34-1-16 يافت.***
به طور عمده استانداردهاي NEMA چهار نوع طراحي را براي موتورهاي AC القايي مشخص مي كنند.(طرح A-B-C-D).منحنيهاي سرعت – گشتاور نوعي آنها در شكل 18 نشان داده شده است.



طرح A گشتاور استارت طبيعي (بين 150 تا 170درصد مجاز) و جريان استارت نسبتا بالا دارد.گشتاور شكست آن در ميان همه طرحهاي NEMA بالاترين مقدار است كه موتور را قادر ميسازد تا با اضافه بارهاي بسيار سنگين براي مدتي كوتاه سروكار داشته باشد.ميزان اختلاف(Slip) 5درصد است.نوعي از استعمال آن در نيرودهي به ماشينهاي قالبدهي تزريقي است.
طرح B معملي ترين نوع موتور القايي AC است كه بفروش ميرسد.مانند طرح A گشتاور استارتي طبيعي داشته ولي جريان استارتي پايين دارد.گشتاور روتور قفل , درآن آنقدر خوب هست كه بسياري از بارهايي را كه در كاربري صنعتي با آنها مواجه ميشود بكار بيندازد.اختلاف(Slip) آن 5درصد است.بازده و ضريب توان ظرفيت تكميل(PF) آن نسبتا بالا بوده درضمن معروفيت طرح آن.از انواع كاربردهاي آن ميتوان به پمپها فنها و ماشين ابزارها اشاره كرد.
طرح C با گشتاور استارتي بالا(بالاتر از دونوع قبلي , 200درصد اسمي) , مناسب براي استفاده در بارهايي با شروع بكار ناگهاني مانند نقاله ها خرد كننده ها دستگاههاي پرتحرك همزنها و پمپهاي دوطرفه و كمپرسورها است.اين موتورها نامزد استفاده در عملياتي با سرعت نزديك به سرعت تمام بدون اضافه بارهاي بزرگ هستند.اختلاف (Slip) در آنها 5درصد ميباشد.
طرح D گشتاور بالايي (بالاتر از همه مدلهايNEMA) دارد.جريان استارت و سرعت ظرفيت تكميل در آن كمند.مقدار بالاي اختلاف (5تا13درصد)اين موتور را براي كاربريهايي با بارهاي متغير و با تغييرات برجسته در سرعت موتورمانند ماشين آلاتي با ذخيره ساز انرژي چرخ طيار پرسهاي منگنه قيچيها آسانسورها استخراج كننده ها بالابرها جرثقيلها پمپهاي چاه نفت ماشينهاي سيمپيچي و غيره مناسب ميسازد.تنظيم سرعت درآنها ضعيف است و آنها را فقط براي استفاده در پرسهاي منگنه جرثقيلها آسانسورها و پمپهاي چاه نفت مناسب مي گرداند.معمولا اين موتور به عنوان مورد سفارشي مطرح ميشود.
بتازگي NEMA طرحي جديد(طرح D) را به استانداردش براي موتور القايي افزوده است.طرح E شبيه طرح B است با اين تفاوت كه بازدهي بالاتر جريان استارتي بالا تر و جريان كاركرد در اضافه باري كمتر دارد.مشخصات گشتاور طرح E شبيه موتورهاي با همان پارامترهاي نيروي تحت استاندارد IEC ميباشد.
امتيازدهيهاي سرعت – گشتاور طرحهاي IEC عملا آينه استانداردهاي NEMA است.طرح N از IEC شبيه طرح B از NEMA است , عمومي ترين موتورها براي كاربريهاي صنعتي.طرح موتورهاي H از IEC با طرح موتورهاي C از NEMA بسيار شبيه است.IEC طرح خاصي كه با طرح D از NEMA برابري كند ندارد.امتيازدهيهاي چرخه كار IEC متفاوت از كار NEMA است.درحاليكه NEMA معمولا سه نوع كار دائمي غيردائمي(دوره اي) و خاص را معرفي ميكند(كه معمولابا دقيقه بيان ميشوند) , IEC 9 نوع چرخه كار مختلف را استعمال مينمايد.
استانداردهايي كه در جدول 1 نشان داده شده اند صرفنظر از بيان پارامترهاي عملكرد و چرخه هاي كاري , افزايش دما (كلاس ايزولاسيون) اندازه كل (ابعاد فيزيكي موتور) جنس پوسته ضريب نگهداري و چند چيز ديگر را بيان ميكند.

شرح
نوع چرخه كاري
نوع
شماره
عملكرد در بارثابت ومدت زمان كافي براي رسيدن به تعادل گرمايي
كارمداوم
S1
1
كاركرد دربارثابت درزمان معين كمترازميزان لازم براي رسيدن به تعادل گرمايي, كه پس ازآن استراحت به دستگاه داده ميشودبراي رسيدن دماي دستگاه به دماي خنك كننده.
كار موقت
S2
2
توالي چرخه هاي كاري برابر, كه هركدام شامل دوره كاربري دربارثابت ويك وقفه (بدون اتصال به برق)ميباشد.براي اين نوع كاربري جريان استارت تاثيرعمده اي برافزايش دماندارد.
كاردوره اي موقت
S3
3
توالي چرخه هاي كاري برابر, كه شامل دوره هاي عمده استارتينگ ميشود.دوره اي زيربارثابت و با وقفه دوره اي.
كاردوره اي موقت با استارت
S4
4
توالي چرخه هاي برابر,كه شامل دوره اي از استارت ودوره اي ازكاربري دربارثابت شده كه بدنبال آن ترمزي سريع ودوره استراحت ميباشد.
كاردوره اي موقت
با ترمزالكتريكي
S5
5
توالي چرخه هاي كاري برابر, كه شامل دوره اي ازكاربري دربارثابت ودوره كاربري اي درحالت بدون بارميباشد.دراين نوع دوره استراحت وجود ندارد.
عملكردمداوم كاردوره اي
S6
6
توالي چرخه هاي كاري برابر, كه شامل دوره اي ازاستارت,دوره اي ازكاردربار ثابت وبدنبال آن باترمزالكتريكي همراه است.اين نوع دوره استراحتي ندارد.
عملكردمداوم كاردوره اي
با ترمزگيري الكتريكي
S7
7
توالي چرخه هاي كاري برابر, كه دربارثابت كه سرعت چرخش آن از قبل معين شده است كارمي كند وبدنبال آن دوره هاي كاربري دربارثابت ديگري باسرعتهاي چرخش متفاوت است(كاربريe.g).دوره استراحت نداشته وبراي رسيدن به تعادل گرمايي دوره كاري بسياركوتاه است.
عملكردمداوم كاردوره اي
با باروابسته و سرعت متغير
S8
8
عموما كاري با باروسرعتي كه بصورت غيرخطي درمحدوده مجاز تغييرمي كنند.اين كابري شامل اضافه بارهاي متناوب است كه گاهي از ظرفيت تكميل فراتر ميروند.
كاربا بارغير دوره اي
و سرعتهاي متنوع
S9
9
 


برچسب معمول نام يك موتور القايي AC

يك برچسب معمول نام يك موتور القاي AC در شكل 19 نشان داده شده است.

 
شرح
اصطلاح
ولتاژ اسمي پايانه
Volts
جريان تغذيه ظرفيت تكميل اسمي
Amps
خروجي اسمي موتور
H.P.
سرعت اسمي در حالت ظرفيت تكميل موتور
R.P.M
فركانس تغذيه مجاز
Hretz
ابعاد فيزيكي خارجي موتور طيق استاندارهاي NEMA
Frame
حالت بار موتور, كوتاه مدت, دوره اي, مداوم ...
Duty
تاريخ ساخت.
Date
كلاس ايزولاسيوني كه براي ساختمان موتوربكاررفته است.اين مورد بيشينه حد دماي پيچه موتور را مشخص مي كند.
Class Insulation
اين موردمشخص ميكند كه موتور به كدام كلاس طراحي NEMA متعلق است.
NEMA Design
فاكتوري است كه مشخص ميكندموتور ميتواند چقدر بيشتر از ظرفيت تكميل اضافه بار داشته باشد.
Service Factor
بازده كاربري موتور در ظرفيت تكميل.
NEMA Nom
Efficiency
تعداد فازهاي استاتور موتور را مشخص مي كند.
PH
تعداد قطبهاي موتور را مشخص مي كند.
Pole
استاندارد ايمني موتور را نشان ميدهد.
مشخص ميكندكه پيچه هاي موتور بصورت Y متصل شده اند يا دلتا.
Y
 


نياز به محرك الكتريكي

صرفنظراز خصوصيات غيرخطي موتورالقايي موضوعات زيادي ضميمه محركه موتور است.اجازه دهيد آنهارا يك به يك بررسي كنيم.
درقديم تلاش ميشد تا سطح طراحي موتورهاي اوليه از كاري كه قرار است انجام دهند بالاتر باشد.نتيجه اين امر سيستم كاري اي با عدم بازده زياد بود چراكه قسمت عمده اي از توان ورودي كار مفيدي انجام نميداد. اغلب اوقات گشتاور توليدي موتور بيشتر از گشتاور مورد نياز باربود.
براي موتور القايي محدوده حالت پايدار بسبب فركانس تغذيه و تعداد قطبهاي ثابت بين 80 تا 100درصد سرعت ارزيابي شده است.هنگاميكه يك موتور القايي آغاز بكار ميكند بعلت نبود نيروي برق واراني جريان داخلي فراواني خواهد كشيد.نتيجه اين امر اتلاف بيشتر در خطوط انتقال و همچنين روتورخواهد بود كه نهايتا به داغ شدن و احتمالاخرابي و ازبين رفتن عايقها خواهد انجاميد.جريان برقواراني زياد ممكن است موجب تقليل ولتاژ در خطوط تغذيه شود كه ممكن است بر عملكرد وسايل كاربردي ديگري كه به همان منبع تغذيه متصل اند تاثير گذارد.
وقتي كه موتور در باري كمينه كارميكند(اصطلاحا محور آزاد)جريان كشيده شده اصولا جريان مغناطيسي سازيست و تقريبا به طور كامل صرف القا ميشود.درنتيجه ضريب توان بسيار پايين و معمولا0.1 است.هنگامي كه بار افزايش يافت جريان كاري شروع به زياد شدن مي كند.جريان مغناطيسي سازي در تمام محدوده عملياتي از وضعيت بدون بار تا ظرفيت تكميل تقريبا ثابت ميماند.از اين رو با افزايش بار ضريب توان بهبود ميابد.
هنگامي كه موتور با ضريب تواني كمتر از واحد كار ميكند جريان كشيده شده توسط موتور بطور طبيعي سينوسي نيست.اين حالت كيفيت توان در خط تغذيه كاهش داده و ممكن است ديگر وسايل كاربردي كه بهمان خط تغذيه متصلند را متاثر سازد.
ضريب توان بسيار مهم است بطوريكه شركتهاي توضيع مشترياني را كه تواني با ضريب تواني پايين تر از حد معين شده از طرف آنان مي كشند را مجازات مي نمايند.اين بدين معني است كه مشتري مجبور است حالت ظرفيت تكميل را در تمام مدت كاربري حفظ كند و يا آنكه جريمه حالت بار سبك را بپردازد.
درمدت كاربري اغلب لازم است كه موتور سريعا متوقف شده و همچنين برعكس كاركند.در كاربريهايي مانند جرثقيلها يا بالابرها ممكن است لازم شود گشتاور چرخش موتور كنترل شود تا از شتابگيري نامطلوب بار جلوگيري شود (درمورد كاهش سرعت بارها تحت تاثير جاذبه).سرعت و دقت توقف يا معكوس شدن عمليات حفاظت سامانه و كيفيت محصول را بهبود مي بخشد.براي كاربريهاي نامبرده در بالا ترمزگيري لازم است.درگذشته ترمزهاي مكانيكي مورد استفاده بودند.نيروي اصطكاك ميان قسمتهاي گردنده و كفشكها ترمزگيري لازم را فراهم مياوردند.با اينحال اين نوع ترمزگيري بسيار كمبازده است.گرماي توليد شده هنگام ترمزگيري اتلاف انرژي را نشان ميدهد.همچنين ترمزهاي مكانيكي نگهداري فعال لازم دارند.
در بسياري از كاربريها توان ورودي تابع سرعت است مانند فنها دمنده ها پمپها و ...در اين نوع بارها گشتاور به مربع سرعت وابسته و نيرو به مكعب سرعت بستگي دارد.سرعت متغير كه وابسته به نياز بار است صرفه جويي در مصرف انرژي زيادي را ميسر ميسازد.كاهشي 20درصدي در سرعت كاربري موتور تقريبا 50درصد كاهش در توان ورودي موتور را بهمراه خواهد داشت.چنين امري در سامانه هايي كه درآنها موتور مستقيما به خط تغذيه متصل است امكان پذير نيست.در بسياري از كاربريهاي كنترل جريان گلوگاهي مكانيكي اي براي كنترل جريان استفاده ميشود.با اينكه وسيله موثري است انرژي را بخاطر اتلافهاي زياد تلف مي كند و عمر موتور را بعلت گرماي توليدشده كم مينمايد.
هنگامي كه تغذيه كننده تواني را با ضريب (PF) كمتر از واحد تحويل ميدهد وتور جرياني با تاثر از هارمونيكها مي كشد.نتيجه اين امر اتلافهاي بيشتر روتور است كه بر عمر موتور تاثير ميگذارد.گشتاور توليدي موتور به علت وجود هارمونيكها ضرباني خواهد شد.در سرعت بالا بسامد ضربان گشتاور به اندازه كافي بزرگ است كه بتواند بوسيله مقاومت موتور تصفيه شود.ولي در سرعت پايين ضرباني بودن گشتاور ضرباني شدن سرعت را بوجود خواهدآورد كه حركت با حالت متشنج را نتيجه خواهد داد كه برعمر ياتاقانها اثر ميگذارد.
خطوط انتقال ممكن است بخاطر عملكرد ساير دستگاههاي متصل به آن حامل بارهاي با تموج (افزايش ناگهاني) يا كاهش ناگهاني باشند.اگر موتور در مقابل ازاين قبيل حالات محافظت نشده باشد در معرض فشاري بيش از مقدار طراحي شده براي آن قرار ميگيرد كه ممكن است سرانجام دچار خرابي نابهنگام شود.
همه مشكلات ذكرشده در بالا كه بوسيله هردوي مصرف كننده ها و توليدكننده ها بوجود ميايند به نياز موتور به كنترلي هوشمند تاكيد دارند.
با پيشرفت فناوري دستگاه حالت جامد (BJT, MOSFET, IGBT, SCR, …) و فناوري ساخت IC كه به ميكروكنترلرهاي بسيارسريع با قابليت اداره كردن الگوريتم مركب بلادرنگ براي بخشيدن پويايي عملكرد دقيق به موتورهاي القايي AC ترقي بخشيد محرك الكتريكي با فركانس متغير عموميت يافت.
  نوشته شده در  یکشنبه بیست و هفتم دی 1388ساعت 11:23  توسط korosh  | 


موتورهاي القايي AC عمومي ترين موتورهايي هستند كه در سامانه هاي كنترل حركت صنعتي و همچنين خانگي استفاده مي شوند.طراحي ساده و مستحكم , قيمت ارزان , هزينه نگه داري پايين و اتصال آسان و كامل به يك منبع نيروي AC امتيازات اصلي موتورهاي القايي AC هستند.انواع متنوعي از موتورهاي القايي AC در بازار موجود است.موتورهاي مختلف براي كارهاي مختلفي مناسب اند.با اينكه طراحي موتورهاي القايي AC آسانتر از موتورهاي DC است , ولي كنترل سرعت و گشتاور در انواع مختلف موتورهاي القايي AC نيازمند دركي عميقتر در طراحي و مشخصات در اين نوع موتورهاست.
اين نكته در اساس انواع مختلف , مشخصات آنها , انتخاب شرايط براي كاربريهاي مختلف و روشهاي كنترل مركزي يك موتورهاي القايي AC را مورد بحث قرار مي دهد.


اصل ساخت اوليه و كاربري

مانند بيشتر موتورها , يك موتورهاي القايي AC يك قسمت ثابت بيروني به نام استاتور و يك روتور كه در درون آن مي چرخد دارند , كه ميان آندو يك فاصله دقيق كارشناسي شده وجود دارد.به طور مجازي همه موتورهاي الكتريكي از ميدان مغناطيسي دوار براي گرداندن روتورشان استفاده مي كنند.يك موتور سه فاز القايي AC تنها نوعي است كه در آن ميدان مغناطيسي دوار به طور طبيعي بوسيله استاتور به خاطر طبيعت تغذيه گر آن توليد مي شود.در حالي كه موتورهاي DC به وسيله اي الكتريكي يا مكانيكي براي توليد اين ميدان دوار نياز دارند.يك موتور القايي AC تك فاز نيازمند يك وسيله الكتريكي خارجي براي توليد اين ميدان مغناطيسي چرخشي است.
در درون هر موتور دو سري آهنرباي مغناطيسي تعبيه شده است.در يك موتور القايي AC يك سري از مغناطيس شونده ها به خاطراينكه تغذيه AC به پيچه هاي استاتور متصل است در استاتور تعبيه شده اند.بخاطر طبيعت متناوب تغذيه ولتاژ AC بر اساس قانون لنز نيرويي الكترومغناطيسي به روتور وارد مي شود (درست شبيه ولتاژي كه در ثانويه ترانسفورماتور القا مي شود).بنابر اين سري ديگر از مغناطيس شونده ها خاصيت مغناطيسي پيدا مي كنند.-نام موتور القايي از اينجاست-.تعامل ميان اين مگنت ها انرژي چرخيدن يا تورك (گشتاور) را فراهم  مي آورد.در نتيجه موتور در جهت گشتاو بوجود آمده چرخش مي كند.


استاتور

استاتور از چندين قطعه باريك آلومنيوم يا آهن سبك ساخته شده است.اين قطعات بصورت يك سيلندر تو خالي به هم منگنه و محكم شده اند(هسته استاتور) با شيارهايي كه در شكا يك نشان داده شده اند.سيم پيچهايي از سيم روكش دار در اين شيارها جاسازي شده اند.هر گروه پيچه با هسته اي كه آن را فرا گرفته يك آهنرباي مغناطيسي (با دو پل) را براي كار كردن با تغذيه AC شكل مي دهد.تعداد قطبهاي يك موتور القايي AC به اتصال دروني پيچه هاي استاتوربستگي دارد.پيچه هاي استاتور مستقيما به منبع انرژي متصل اند.آنها به صورتي متصل اند كه با برقراري تغذيه AC يك ميدان مغناطيسي چرخنده توليد مي شود.



روتور

روتور از چندين قطعه مجزاي باريك فولادي كه ميانشان ميله هايي از مس يا آلومنيوم تعبيه شده ساخته شده است.در رايج ترين نوع روتور (روتور قفس سنجابي) اين ميله ها در انتهاي خود به صورت الكتريكي و مكانيكي بوسيله حلقه هايي به هم متصل شده اند.تقريبا 90 درصد از موتورهاي القايي داراي روتور قفس سنجابي مي باشند و اين به خاطر آن است كه اين نوع روتور ساختي مستحكم و ساده دارد.اين روتور از هسته اي چند تكه استوانه اي با محوري كه شكافهاي موازي براي جادادن رساناها درون آن دارد تشكيل شده است.هر شكاف يك ميله مسي يا آلومنيومي يا آلياژي را شامل مي شود.در اين ميله ها به طور دائمي بوسيله حلقه هاي انتهايي آنها همچنان كه در شكل دو مشاهده مي شود مدار كوتاه برقرار است.چون اين نوع مونتاژ درست شبيه قفس سنجاب است , اين نام براي آن انتخاب شده است.ميله اي روتور دقيقا با محور موازي نيستند.در عوض به دو دليل مهم قدري اريب نصب مي شوند.
دليل اول آنكه موتور با كاهش صوت مغناطيسي بدون صدا كاركرده و براي آنكه از هارمونيكها در شكافها كاسته شود.
دليل دوم آن است كه گرايش روتور به هنگ كردن كمتر شود.دندانه هاي روتور به خاطر جذب مغناطيسي مستقيم (محض) تلاش مي كنند كه در مقابل دندانه هاي استاتور باقي بمانند.اين اتفاق هنگامي مي افتد كه تعداد دندانه هاي روتور و استاتور برابر باشند.
روتور بوسيله مهار هايي در دو انتها روي محور نصب شده ; يك انتهاي محور در حالت طبيعي براي انتقال نيرو بلندتر از طرف ديگر گرفته مي شود.ممكن است بعضي موتورها محوري فرعي در طرف ديگر(غير گردنده - غير منتقل كننده نيرو) براي اتصال دستگاههاي حسگر حالت(وضعيت) و سرعت داشته باشند.بين استاتور و روتور شكافي هوايي موجود است.بعلت القا انرژي از استاتور به روتور منتقل مي شود.تورك توليد شده به روتور نيرو داده و سپس براي چرخيدن به آن نيرو مي كند.صرف نظر از روتور استفاده شده قواعد كلي براي دوران يكي است.



سرعت يك موتور القايي

ميدان مغناطيسي اي كه در استاتور توليد ميشود با سرعت سنكرون مي چرخد.(Ns)



در روتور ميدان مغناطيسي توليد مي شود زيرا به طور طبيعي ولتاژ متناوب است.
براي كاهش سرعت نسبي نسبت به (شار)استاتور , روتور چرخش را در همان جهتي كه شار استاتور دارد آغاز مي كند و تلاش مي كند تا به سرعت چرخش فلاكس نايل شود.با اينحال روتور هرگز موفق نمي شود كه به سرعت ميدان استاتور برسد.روتور از سرعت ميدان استاتور كندتر مي گردد.اين سرعت Base speed نام دارد.(Nb)
تفاوتها ميان Ns و Nb Slip نام دارد.اسليپ مقادير مختلف فشار(مكانيكي) بستگي دارد.هر افزايشي در فشار موجب كندتر كار كردن روتور و افزايش اسليپ مي شود.برعكس كاهش فشار سبب سرعت گرفتن روتور و كاهش اسليپ مي شود.اسليپ بوسيله درصد نشان داده شده و با فرمول زير مشخص مي شود.



انواع موتورهاي القايي

عموما دسته بندي موتورهاي القاي براساس تعداد پيچه هاي استاتور است كه عبارتند از:
موتورهاي القايي تك فاز
موتورهاي القايي سه فاز

موتورهاي القايي تك فاز

احتمالا بيشتر از كل انواع موتورها از موتورهاي القايي AC تك فاز استفاده مي شود.منطقي است كه بايد موتورهاي داراي كمترين گراني و هزينه نگه داري بيشتر استفاده شود. موتور القايي AC تك فاز بهترين مصداق اين توصيف است.آن طور كه از نام آن برميايد اين نوع از موتور تنها يك پيچه (پيچه اصلي) دارد و با يك منبع تغذيه تك فاز كار مي كند.در تمام موتورهاي القايي تك فاز روتور از نوع قفس سنجابي است.
موتور القايي تك فاز خود راه انداز نيست.هنگامي كه موتور به يك تغذيه تك فاز متصل است پيچه اصلي داراي جرياني متناوب مي شود.اين جريان متناوب ميدان مغناطيسي اي ضرباني توليد مي كند.بسبب القا روتور تحريك مي شود.چون ميدان مغناطيسي اصلي ضرباني است توركي كه براي چرخش موتور لازم است بوجود نمي آيد و سبب ارتعاش روتور و نه چرخش آن مي شود.از اين رو موتور القايي تك فاز به دستگاه آغاز گري نياز داردكه مي تواندضربات آغازي را براي چرخش موتور توليد كند.
دستگاه آغاز گر موتورهاي القايي تك فاز اساسا پيچه اي اضافي در استاتور است (پيچه كمكي) كه در شكل سه نشان داده شده است.پيچه استارت مي تواند داراي خازنهاي سري ويا سوئيچ گريز از مركز باشد.هنگامي كه ولتاژ تغذيه برقرار است جريان در پيچه اصلي بسبب مقاومت پيچه اصلي ولتاژتغذيه را افت ميدهد (ولتاژ به جريان تبديل مي شود).در همين حين جريان در پيچه استارت بسته به مقاومت دستگاه استارت به افزايش ولتاژ تغذيه تبديل مي شود.فعل و انفعال ميان ميدانهاي مغناطيسي كه پيچه اصلي و دستگاه استارت مي سازند ميدان برايندي ميسازند كه در جهتي گردش مي كند.موتور گردش را در جهت اين ميدان برايند آغاز ميكند.
هنگامي كه موتور به 75 درصد دور مجاز خود مي رسد يك سوئيچ گريز از مركز پيچه استارت را از مدار خارج مي كند.از اين لحظه به بعد موتور تك فاز مي تواند تورك كافي را براي ادامه كاركرد خود نگه دارد.
بجز انواع خاص داراي Capacitor start / capacitor run عموماهمه موتورهاي تك فاز فقط براي كاربري هاي بالاي 3/4 hp استفاده مي شوند.
بسته به انواع تكنيكهاي استارت موتورهاي القايي تك فاز AC در دسته بندي اي وسيع آن گونه كه در شكل زير توصيف شده قرار دارند.



موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.



تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.(براي مشاهده منحني سرعت – گشتاور به شكل 9نگاه كنيد).
كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.براي منحني سرعت گشتاور به شكل 9 مراجعه كنيد.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.



اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب ميسازد.براي منحني سرعت – گشتاور به شكل 9 مراجعه كنيد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.



موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.



اين نوع موتور مي تواند ... و بازده بيشتر طراحي شود.(منحني سرعت – گشتاور در شكل 9 را ببينيد).اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپهاي آب فشار قوي , پمپهاي تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

عمومي ترين موتورهايي هستند كه در سامانه هاي كنترل حركت صنعتي و همچنين خانگي استفاده مي شوند.طراحي ساده و مستحكم , قيمت ارزان , هزينه نگه داري پايين و اتصال آسان و كامل به يك منبع نيروي AC امتيازات اصلي موتورهاي القايي AC هستند.انواع متنوعي از موتورهاي القايي AC در بازار موجود است.موتورهاي مختلف براي كارهاي مختلفي مناسب اند.با اينكه طراحي موتورهاي القايي AC آسانتر از موتورهاي DC است , ولي كنترل سرعت و گشتاور در انواع مختلف موتورهاي القايي AC نيازمند دركي عميقتر در طراحي و مشخصات در اين نوع موتورهاست.
اين نكته در اساس انواع مختلف , مشخصات آنها , انتخاب شرايط براي كاربريهاي مختلف و روشهاي كنترل مركزي يك موتورهاي القايي AC را مورد بحث قرار مي دهد.


اصل ساخت اوليه و كاربري

مانند بيشتر موتورها , يك موتورهاي القايي AC يك قسمت ثابت بيروني به نام استاتور و يك روتور كه در درون آن مي چرخد دارند , كه ميان آندو يك فاصله دقيق كارشناسي شده وجود دارد.به طور مجازي همه موتورهاي الكتريكي از ميدان مغناطيسي دوار براي گرداندن روتورشان استفاده مي كنند.يك موتور سه فاز القايي AC تنها نوعي است كه در آن ميدان مغناطيسي دوار به طور طبيعي بوسيله استاتور به خاطر طبيعت تغذيه گر آن توليد مي شود.در حالي كه موتورهاي DC به وسيله اي الكتريكي يا مكانيكي براي توليد اين ميدان دوار نياز دارند.يك موتور القايي AC تك فاز نيازمند يك وسيله الكتريكي خارجي براي توليد اين ميدان مغناطيسي چرخشي است.
در درون هر موتور دو سري آهنرباي مغناطيسي تعبيه شده است.در يك موتور القايي AC يك سري از مغناطيس شونده ها به خاطراينكه تغذيه AC به پيچه هاي استاتور متصل است در استاتور تعبيه شده اند.بخاطر طبيعت متناوب تغذيه ولتاژ AC بر اساس قانون لنز نيرويي الكترومغناطيسي به روتور وارد مي شود (درست شبيه ولتاژي كه در ثانويه ترانسفورماتور القا مي شود).بنابر اين سري ديگر از مغناطيس شونده ها خاصيت مغناطيسي پيدا مي كنند.-نام موتور القايي از اينجاست-.تعامل ميان اين مگنت ها انرژي چرخيدن يا تورك (گشتاور) را فراهم  مي آورد.در نتيجه موتور در جهت گشتاو بوجود آمده چرخش مي كند.


استاتور

استاتور از چندين قطعه باريك آلومنيوم يا آهن سبك ساخته شده است.اين قطعات بصورت يك سيلندر تو خالي به هم منگنه و محكم شده اند(هسته استاتور) با شيارهايي كه در شكا يك نشان داده شده اند.سيم پيچهايي از سيم روكش دار در اين شيارها جاسازي شده اند.هر گروه پيچه با هسته اي كه آن را فرا گرفته يك آهنرباي مغناطيسي (با دو پل) را براي كار كردن با تغذيه AC شكل مي دهد.تعداد قطبهاي يك موتور القايي AC به اتصال دروني پيچه هاي استاتوربستگي دارد.پيچه هاي استاتور مستقيما به منبع انرژي متصل اند.آنها به صورتي متصل اند كه با برقراري تغذيه AC يك ميدان مغناطيسي چرخنده توليد مي شود.



روتور

روتور از چندين قطعه مجزاي باريك فولادي كه ميانشان ميله هايي از مس يا آلومنيوم تعبيه شده ساخته شده است.در رايج ترين نوع روتور (روتور قفس سنجابي) اين ميله ها در انتهاي خود به صورت الكتريكي و مكانيكي بوسيله حلقه هايي به هم متصل شده اند.تقريبا 90 درصد از موتورهاي القايي داراي روتور قفس سنجابي مي باشند و اين به خاطر آن است كه اين نوع روتور ساختي مستحكم و ساده دارد.اين روتور از هسته اي چند تكه استوانه اي با محوري كه شكافهاي موازي براي جادادن رساناها درون آن دارد تشكيل شده است.هر شكاف يك ميله مسي يا آلومنيومي يا آلياژي را شامل مي شود.در اين ميله ها به طور دائمي بوسيله حلقه هاي انتهايي آنها همچنان كه در شكل دو مشاهده مي شود مدار كوتاه برقرار است.چون اين نوع مونتاژ درست شبيه قفس سنجاب است , اين نام براي آن انتخاب شده است.ميله اي روتور دقيقا با محور موازي نيستند.در عوض به دو دليل مهم قدري اريب نصب مي شوند.
دليل اول آنكه موتور با كاهش صوت مغناطيسي بدون صدا كاركرده و براي آنكه از هارمونيكها در شكافها كاسته شود.
دليل دوم آن است كه گرايش روتور به هنگ كردن كمتر شود.دندانه هاي روتور به خاطر جذب مغناطيسي مستقيم (محض) تلاش مي كنند كه در مقابل دندانه هاي استاتور باقي بمانند.اين اتفاق هنگامي مي افتد كه تعداد دندانه هاي روتور و استاتور برابر باشند.
روتور بوسيله مهار هايي در دو انتها روي محور نصب شده ; يك انتهاي محور در حالت طبيعي براي انتقال نيرو بلندتر از طرف ديگر گرفته مي شود.ممكن است بعضي موتورها محوري فرعي در طرف ديگر(غير گردنده - غير منتقل كننده نيرو) براي اتصال دستگاههاي حسگر حالت(وضعيت) و سرعت داشته باشند.بين استاتور و روتور شكافي هوايي موجود است.بعلت القا انرژي از استاتور به روتور منتقل مي شود.تورك توليد شده به روتور نيرو داده و سپس براي چرخيدن به آن نيرو مي كند.صرف نظر از روتور استفاده شده قواعد كلي براي دوران يكي است.



سرعت يك موتور القايي

ميدان مغناطيسي اي كه در استاتور توليد ميشود با سرعت سنكرون مي چرخد.(Ns)



در روتور ميدان مغناطيسي توليد مي شود زيرا به طور طبيعي ولتاژ متناوب است.
براي كاهش سرعت نسبي نسبت به (شار)استاتور , روتور چرخش را در همان جهتي كه شار استاتور دارد آغاز مي كند و تلاش مي كند تا به سرعت چرخش فلاكس نايل شود.با اينحال روتور هرگز موفق نمي شود كه به سرعت ميدان استاتور برسد.روتور از سرعت ميدان استاتور كندتر مي گردد.اين سرعت Base speed نام دارد.(Nb)
تفاوتها ميان Ns و Nb Slip نام دارد.اسليپ مقادير مختلف فشار(مكانيكي) بستگي دارد.هر افزايشي در فشار موجب كندتر كار كردن روتور و افزايش اسليپ مي شود.برعكس كاهش فشار سبب سرعت گرفتن روتور و كاهش اسليپ مي شود.اسليپ بوسيله درصد نشان داده شده و با فرمول زير مشخص مي شود.



انواع موتورهاي القايي

عموما دسته بندي موتورهاي القاي براساس تعداد پيچه هاي استاتور است كه عبارتند از:
موتورهاي القايي تك فاز
موتورهاي القايي سه فاز

موتورهاي القايي تك فاز

احتمالا بيشتر از كل انواع موتورها از موتورهاي القايي AC تك فاز استفاده مي شود.منطقي است كه بايد موتورهاي داراي كمترين گراني و هزينه نگه داري بيشتر استفاده شود. موتور القايي AC تك فاز بهترين مصداق اين توصيف است.آن طور كه از نام آن برميايد اين نوع از موتور تنها يك پيچه (پيچه اصلي) دارد و با يك منبع تغذيه تك فاز كار مي كند.در تمام موتورهاي القايي تك فاز روتور از نوع قفس سنجابي است.
موتور القايي تك فاز خود راه انداز نيست.هنگامي كه موتور به يك تغذيه تك فاز متصل است پيچه اصلي داراي جرياني متناوب مي شود.اين جريان متناوب ميدان مغناطيسي اي ضرباني توليد مي كند.بسبب القا روتور تحريك مي شود.چون ميدان مغناطيسي اصلي ضرباني است توركي كه براي چرخش موتور لازم است بوجود نمي آيد و سبب ارتعاش روتور و نه چرخش آن مي شود.از اين رو موتور القايي تك فاز به دستگاه آغاز گري نياز داردكه مي تواندضربات آغازي را براي چرخش موتور توليد كند.
دستگاه آغاز گر موتورهاي القايي تك فاز اساسا پيچه اي اضافي در استاتور است (پيچه كمكي) كه در شكل سه نشان داده شده است.پيچه استارت مي تواند داراي خازنهاي سري ويا سوئيچ گريز از مركز باشد.هنگامي كه ولتاژ تغذيه برقرار است جريان در پيچه اصلي بسبب مقاومت پيچه اصلي ولتاژتغذيه را افت ميدهد (ولتاژ به جريان تبديل مي شود).در همين حين جريان در پيچه استارت بسته به مقاومت دستگاه استارت به افزايش ولتاژ تغذيه تبديل مي شود.فعل و انفعال ميان ميدانهاي مغناطيسي كه پيچه اصلي و دستگاه استارت مي سازند ميدان برايندي ميسازند كه در جهتي گردش مي كند.موتور گردش را در جهت اين ميدان برايند آغاز ميكند.
هنگامي كه موتور به 75 درصد دور مجاز خود مي رسد يك سوئيچ گريز از مركز پيچه استارت را از مدار خارج مي كند.از اين لحظه به بعد موتور تك فاز مي تواند تورك كافي را براي ادامه كاركرد خود نگه دارد.
بجز انواع خاص داراي Capacitor start / capacitor run عموماهمه موتورهاي تك فاز فقط براي كاربري هاي بالاي 3/4 hp استفاده مي شوند.
بسته به انواع تكنيكهاي استارت موتورهاي القايي تك فاز AC در دسته بندي اي وسيع آن گونه كه در شكل زير توصيف شده قرار دارند.



موتور القايي AC فاز شكسته

موتور فاز شكسته همچنين به عنوان Induction start/Induction run (استارت القايي/كاركرد القايي)هم شناخته مي شود كه دو پيچه دارد.پيچه استارت از سيم نازكتر و تعداد دور كمتر نسبت به پيچه اصلي براي بوجود آوردن مقاومت بيشتر ساخته شده است.همچنين ميدان پيچه استارت در زاويه اي غير از آنچه كه پيچه اصلي دارد قرار مي گيرد كه سبب آغاز چرخش موتور مي شود.پيچه اصلي كه از سيم ضخيم تري ساخته شده است موتور را هميشه درحالت چرخش باقي نگه مي دارد.



تورك آغازين كم است مثلا 100 تا 175 درصد تورك ارزيابي شده.موتور براي استارت جرياني زياد طلب مي كند.تقريبا 700 تا 1000 درصد جريان ارزيابي شده.تورك بيشينه توليد شده نيز در محدوده 250 تا 350 درصد از تورك براوردشده مي باشد.(براي مشاهده منحني سرعت – گشتاور به شكل 9نگاه كنيد).
كاربريهاي خوب براي موتورهاي فاز شكسته شامل سمباده (آسياب) هاي كوچك , دمنده ها و فنهاي كوچك و ديگر دستگاههايي با نياز به تورك آغازين كم با و نياز به قدرت 1/20 تا 1/3 اسب بخار مي باشد.از استفاده از اين موتورها در كاربريهايي كه به دوره هاي خاموش و روشن و گشتاور زياد نيازدارند خود داري نماييد.

موتور القايي با استارت خازني

اين نوع , موتور اصلاح شده فاز شكسته با خازني سري با آن براي بهبود استارت است.همانند موتور معمولي فاز شكسته اين نوع موتور يك سوئيچ گريز از مركز داشته كه هنگامي كه موتور به 75 درصد سرعت ارزيابي شده مي رسد , پيچه استارت را از مدار خارج مي نمايد.از آنجا كه خازن با مدار استارت موازي است , گشتاور استارت بيشتري توليد مي كند , معمولا در حدود 200 تا 400 درصد گشتاور ارزيابي شده.و جريان استارت معمولا بين 450 تا 575 درصد جريان ارزيابي شده است.كه بسيار كمتر از موتور فاز شكسته و بعلت سيم ضخيمتر در مدار استارت است.براي منحني سرعت گشتاور به شكل 9 مراجعه كنيد.
نوع اصلاح شده اي از موتو با استارت خازني ، موتور با استارت مقاومتي است.در اين نوع موتور خازن استارت با يك مقاومت جايگزين شده است.موتور استارت مقاومتي در كاربريهايي مورد استفاده قرار مي گيرد كه ميزان گشتاور استارتينگي كمتر از مقداري كه موتور استارت خازني توليد مي كند لازم است.صرف نظر از هزينه اين موتور امتيازات عمده اي نسبت به موتور استارت خازني ندارد.



اين موتورها در انواع مختلف كاربريهاي پولي و تسمه اي مانند تسمه نقاله هاي كوچك , پمپها و دمنده هاي بزرگ به خوبي بسياري از خود گردانها و كاربريهاي چرخ دنده اي استفاده مي شوند.

موتورهاي AC القايي با خازن دائمي اسپليت

اين موتور (PSC) نوعي خازن دائما متصل به صورت سري به پيچه استارت دارد.اين كار سبب آن ميشود كه پيچه استارت تازماني كه موتور به سرعت چرخش خود برسد بصورت پيچه اي كمكي عمل كند.از آنجا كه خازن عملكرد اصلي , بايد براي استفاده مداوم طراحي شده باشد , نميتواند توان استارتي معادل يك موتور استارت خازني ايجاد نمايد.گشتاور استارت يك موتور (PSC) معمولا كم و در حدود 30 تا 150 درصد گشتاور ارزيابي شده است.موتورهاي (PSC) جريان استارتي پايين , معمولا در كمتر از 200 درصد جريان برآورد شده دارند كه آنها را براي كاربريهايي با سرعتهاي داراي چرخه هاي خاموش روشن بالا بسيار مناسب ميسازد.براي منحني سرعت – گشتاور به شكل 9 مراجعه كنيد.
موتورهاي PSC امتيازات فراواني دارند.طراحي موتور براحتي براي استفاده با كنترل كننده هاي سرعت ميتواند اصلاح شود.همچنين مي توانند براي بازدهي بهينه و ضريب توان بالا در فشار برآورد شده طراحي شوند.آنها به عنوان قابل اطمينان ترين موتور تك فاز مطرح ميشوند.مخصوصا به اين خاطر كه به سوئيچ گريز از مركز نيازي ندارند.



موتورهاي PSC بسته به طراحيشان كاربري بسيار متنوعي دارند كه شامل فنها , دمنده ها با نياز به گشتاور استارت كم و چرخه هاي كاري غير دائمي مانند تنظيم دستگاهها (طرز كارها) , عملگر درگاهها و بازكننده هاي درب گاراژها ميشود.

موتورهاي AC القايي استارت با خازن/ كاركرد با خازن

اين موتور , همانند موتور با استارت خازن , خازني از نوع استارتي در حالت سري با پيچه كمكي براي گشتاور زياد استارت دارد.همچنين مانند يك موتور PSC خازني از نوع كاركرد كه دركنار خازن استارت در حالت سري با پيچه كمكي است كه بعد از شروع به كار موتور از مدار خارج مي شود.اين حالت سبب بوجود آمدن گشتاوري در حد اضافي مي شود.



اين نوع موتور مي تواند ... و بازده بيشتر طراحي شود.(منحني سرعت – گشتاور در شكل 9 را ببينيد).اين موتور بخاطر خازنهاي كاركرد و استارت و سوئيچ گريز از مركز آن پرهزينه است.
اين موتور مي تواند در بسياري از كاربريهايي كه از هرموتور تك فاز ديگري انتظار ميرود استفاده شود.اين كاربريها شامل ماشينهاي مرتبط با چوب , كمپرسورهاي هوا , پمپهاي آب فشار قوي , پمپهاي تخليه و ديگر كاربردهاي نيازمند گشتاورهاي بالا در حد 1 تا 10 اسب بخار مي شوند.

  نوشته شده در  یکشنبه بیست و هفتم دی 1388ساعت 11:21  توسط korosh  | 

ترانسفورماتورها را با توجه به کاربرد و خصوصیات آنها به سه دسته کوچک متوسط و بزرگ دسته بندی کرد. ساختن ترانسفورماتورهای بزرگ و متوسط به دلیل مسایل حفاظتی و عایق بندی و امکانات موجود ، کار ساده ای نیست ولی ترانسفورماتورهای کوچک را می توان بررسی و یا ساخت. برای ساختن ترانسفورماتورهای کوچک ، اجزای آن مانند ورقه آهن ، سیم و قرقره را به سادگی می توان تهیه نمود.

اجزای تشکیل دهنده یک ترانسفورماتور به شرح زیر است؛

هسته ترانسفورماتور:


هسته ترانسفورماتور متشکل از ورقه های نازک است که سطح آنها با توجه به قدرت ترانسفورماتور ها محاسبه می شود. برای کم کردن تلفات آهنی هسته ترانسفورماتور را نمی توان به طور یکپارچه ساخت. بلکه معمولا آنها را از ورقه های نازک فلزی که نسبت به یکدیگر عایق‌اند، می سازند. این ورقه ها از آهن بدون پسماند با آلیاژی از سیلیسیم (حداکثر 4.5 درصد) که دارای قابلیت هدایت الکتریکی و قابلیت هدایت مغناطیسی زیاد است ساخته می شوند.

در اثر زیاد شدن مقدار سیلیسیم ، ورقه‌های دینام شکننده می شود. برای عایق کردن ورقهای ترانسفورماتور ، قبلا از یک کاغذ نازک مخصوص که در یک سمت این ورقه چسبانده می شود، استفاده می کردند اما امروزه بدین منظور در هنگام ساختن و نورد این ورقه ها یک لایه نازک اکسید فسفات یا سیلیکات به ضخامت 2 تا 20 میکرون به عنوان عایق در روی آنها می مالند و با آنها روی ورقه ها را می پوشانند. علاوه بر این ، از لاک مخصوص نیز برای عایق کردن یک طرف ورقه ها استفاده می شود. ورقه های ترانسفورماتور دارای یک لایه عایق هستند.

بنابراین ، در مواقع محاسبه سطح مقطع هسته باید سطح آهن خالص را منظور کرد. ورقه‌های ترانسفورماتورها را به ضخامت های 0.35 و 0.5 میلی متر و در اندازه های استاندارد می سازند. باید دقت کرد که سطح عایق شده ى ورقه های ترانسفورماتور همگی در یک جهت باشند (مثلا همه به طرف بالا) علاوه بر این تا حد امکان نباید در داخل قرقره فضای خالی باقی بماند. لازم به ذکر است ورقه ها با فشار داخل قرقره جای بگیرند تا از ارتعاش و صدا کردن آنها نیز جلوگیری شود.

سیم پیچ ترانسفورماتور :


معمولا برای سیم پیچ اولیه و ثانویه ترانسفورماتور از هادی های مسی با عایق (روپوش) لاکی استفاده می‌کنند. اینها با سطح مقطع گرد و اندازه‌های استاندارد وجود دارند و با قطر مشخص می‌شوند. در ترانسفورماتورهای پرقدرت از هادیهای مسی که به صورت تسمه هستند استفاده می‌شوند و ابعاد این گونه هادی‌ها نیز استاندارد است.

توضیح سیم پیچی ترانسفورماتور به این ترتیب است که سر سیم پیچ‌ها را به وسیله روکش عایقها از سوراخهای قرقره خارج کرد، تا بدین ترتیب سیم ها قطع (خصوصا در سیمهای نازک و لایه‌های اول) یا زخمی نشوند. علاوه بر این بهتر است رنگ روکش‌ها نیز متفاوت باشد تا در ترانسفورماتورهای دارای چندین سیم پیچ ، را به راحتی بتوان سر هر سیم پیچ را مشخص کرد. بعد از اتمام سیم پیچی یا تعمیر سیم پیچهای ترانسفورماتور باید آنها را با ولتاژهای نامی خودشان برای کنترل و کسب اطمینان از سالم بودن عایق بدنه و سیم پیچ اولیه ، بدنه و سیم پیچ ثانویه و سیم پیچ اولیه آزمایش کرد.

قرقره ترانسفورماتور:


برای حفاظ و نگهداری از سیم پیچ‌های ترانسفورماتور خصوصا در ترانسفورماتورهای کوچک باید از قرقره استفاده نمود. جنس قرقره باید از مواد عایق باشد قرقره معمولا از کاغذ عایق سخت ، فیبرهای استخوانی یا مواد ترموپلاستیک می سازند. قرقره هایی که از جنس ترموپلاستیک هستند معمولا یک تکه ساخته می شوند ولی برای ساختن قرقره های دیگر آنها را در چند قطعه ساخت و سپس بر روی همدگر سوار کرد. بر روی دیواره های قرقره باید سوراخ یا شکافی ایجاد کرد تا سر سیم پیچ از آنها خارج شوند.

اندازه قرقره باید با اندازه ى ورقه‌های ترانسفورماتور متناسب باشد و سیم پیچ نیز طوری بر روی آن پیچیده شود. که از لبه های قرقره مقداری پایین تر قرار گیرد تا هنگام جا زدن ورقه‌های ترانسفورماتور ، لایه ى رویی سیم پیچ صدمه نبیند. اندازه قرقره های ترانسفورماتورها نیز استاندارد شده است اما در تمام موارد ، با توجه به نیاز ، قرقره مناسب را می توان طراحی کرد
  نوشته شده در  دوشنبه بیست و یکم دی 1388ساعت 17:14  توسط korosh  | 
 
  POWERED BY BLOGFA.COM